Maximum Likelihood pqEDMD Identification

Camilo Garcia-Tenorio, A. Wouwer
{"title":"Maximum Likelihood pqEDMD Identification","authors":"Camilo Garcia-Tenorio, A. Wouwer","doi":"10.1109/ICSTCC55426.2022.9931770","DOIUrl":null,"url":null,"abstract":"The ordinary least squares (OLS) regression for linear system identification might give biased results when noise affects some explicative variables. As OLS is at the core of the extended dynamic mode decomposition algorithm, it is interesting to pay attention to alternative methods, such as maximum likelihood estimation (MLE), to deal with the identification problem. This study explores this direction, discusses the question of defining the probability distribution of the observable functions, and illustrates the performance of the algorithm with two case studies. The first one shows a successful application of MLE to a simple reaction network, while the second, more complex example based on the Duffing equation highlights the method limitation in relation with the empirical construction of the probability distribution of the observables.","PeriodicalId":220845,"journal":{"name":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC55426.2022.9931770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The ordinary least squares (OLS) regression for linear system identification might give biased results when noise affects some explicative variables. As OLS is at the core of the extended dynamic mode decomposition algorithm, it is interesting to pay attention to alternative methods, such as maximum likelihood estimation (MLE), to deal with the identification problem. This study explores this direction, discusses the question of defining the probability distribution of the observable functions, and illustrates the performance of the algorithm with two case studies. The first one shows a successful application of MLE to a simple reaction network, while the second, more complex example based on the Duffing equation highlights the method limitation in relation with the empirical construction of the probability distribution of the observables.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最大似然pqEDMD鉴定
当噪声影响某些解释变量时,用于线性系统辨识的普通最小二乘(OLS)回归可能会给出有偏差的结果。由于OLS是扩展动态模态分解算法的核心,因此关注最大似然估计(MLE)等替代方法来处理识别问题是很有趣的。本研究探讨了这一方向,讨论了定义可观测函数的概率分布的问题,并通过两个案例说明了算法的性能。第一个例子显示了MLE在简单反应网络中的成功应用,而第二个基于Duffing方程的更复杂的例子突出了与观测值概率分布的经验构造相关的方法局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance analysis of 5G communication based on distance evaluation using the SIM8200EA-M2 module Using 3D Scanning Techniques from Robotic Applications in the Constructions Domain Chen-Fliess Series for Linear Distributed Systems with One Spatial Dimension Component generator for the development of RESTful APIs Sensitivity-Based Iterative State-Feedback Tuning for Nonlinear Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1