A Privacy-Preserving Incentive Mechanism for Federated Cloud-Edge Learning

Tianyu Liu, Boya Di, Shupeng Wang, Lingyang Song
{"title":"A Privacy-Preserving Incentive Mechanism for Federated Cloud-Edge Learning","authors":"Tianyu Liu, Boya Di, Shupeng Wang, Lingyang Song","doi":"10.1109/GLOBECOM46510.2021.9685615","DOIUrl":null,"url":null,"abstract":"The federated learning scheme enhances the privacy preservation through avoiding the private data uploading in cloud-edge computing. However, the attacks against the uploaded model updates still cause private data leakage which demotivates the privacy-sensitive participating edge devices. Facing this issue, we aim to design a privacy-preserving incentive mechanism for the federated cloud-edge learning (PFCEL) system such that 1) the edge devices are motivated to actively contribute to the updated model uploading, 2) a trade-off between the private data leakage and the model accuracy is achieved. We formulate the incentive design problem as a three-layer Stackelberg game, where the server-device interaction is further formulated as a contract design problem. Extensive numerical evaluations demonstrate the effectiveness of our designed mechanism in terms of privacy preservation and system utility.","PeriodicalId":200641,"journal":{"name":"2021 IEEE Global Communications Conference (GLOBECOM)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM46510.2021.9685615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The federated learning scheme enhances the privacy preservation through avoiding the private data uploading in cloud-edge computing. However, the attacks against the uploaded model updates still cause private data leakage which demotivates the privacy-sensitive participating edge devices. Facing this issue, we aim to design a privacy-preserving incentive mechanism for the federated cloud-edge learning (PFCEL) system such that 1) the edge devices are motivated to actively contribute to the updated model uploading, 2) a trade-off between the private data leakage and the model accuracy is achieved. We formulate the incentive design problem as a three-layer Stackelberg game, where the server-device interaction is further formulated as a contract design problem. Extensive numerical evaluations demonstrate the effectiveness of our designed mechanism in terms of privacy preservation and system utility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
联邦云边缘学习的隐私保护激励机制
联邦学习方案通过避免云边缘计算中的私有数据上传,增强了隐私保护能力。然而,针对上传模型更新的攻击仍然会导致隐私数据泄露,从而使对隐私敏感的参与边缘设备失去动力。面对这一问题,我们旨在为联邦云边缘学习(PFCEL)系统设计一种隐私保护激励机制,使边缘设备积极参与更新模型的上传,2)在隐私数据泄露和模型准确性之间实现权衡。我们将激励设计问题表述为三层Stackelberg博弈,其中服务器-设备交互进一步表述为契约设计问题。广泛的数值评估证明了我们设计的机制在隐私保护和系统效用方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Blockchain-based Energy Trading Scheme for Dynamic Charging of Electric Vehicles Algebraic Design of a Class of Rate 1/3 Quasi-Cyclic LDPC Codes A Fast and Scalable Resource Allocation Scheme for End-to-End Network Slices Modelling of Multi-Tier Handover in LiFi Networks Enabling Efficient Scheduling Policy in Intelligent Reflecting Surface Aided Federated Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1