Sensor failure detection, identification and accommodation using neural network and fuzzy voter

Seong-Ho Kwon, H. Ahn
{"title":"Sensor failure detection, identification and accommodation using neural network and fuzzy voter","authors":"Seong-Ho Kwon, H. Ahn","doi":"10.23919/ICCAS.2017.8204431","DOIUrl":null,"url":null,"abstract":"Sensor failure detection, identification and accommodation (SFDIA) is a challenging and important problem on unmanned aerial vehicles (UAVs) or other safety critical applications. This paper proposes new SFDIA scheme. The new scheme combines advantages of hardware redundancy and analytical redundancy. Fuzzy voter and neural network (NN)-based sensor estimators are developed in the proposed scheme. The fuzzy voter is based on the fuzzy voting scheme. The new SFDIA scheme has a more reliable redundancy based on the FCC NN. The performance of the SFDIA scheme is validated by experiments of quadrotor with two gyro sensor modules. It can detect the sensors failure, pinpoint what sensor fails, and replace the sensor with the other normal sensor.","PeriodicalId":140598,"journal":{"name":"2017 17th International Conference on Control, Automation and Systems (ICCAS)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 17th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS.2017.8204431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Sensor failure detection, identification and accommodation (SFDIA) is a challenging and important problem on unmanned aerial vehicles (UAVs) or other safety critical applications. This paper proposes new SFDIA scheme. The new scheme combines advantages of hardware redundancy and analytical redundancy. Fuzzy voter and neural network (NN)-based sensor estimators are developed in the proposed scheme. The fuzzy voter is based on the fuzzy voting scheme. The new SFDIA scheme has a more reliable redundancy based on the FCC NN. The performance of the SFDIA scheme is validated by experiments of quadrotor with two gyro sensor modules. It can detect the sensors failure, pinpoint what sensor fails, and replace the sensor with the other normal sensor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用神经网络和模糊投票器对传感器故障进行检测、识别和调节
传感器故障检测、识别和适应(SFDIA)是无人机(uav)或其他安全关键应用中具有挑战性和重要的问题。本文提出了一种新的SFDIA方案。新方案结合了硬件冗余和分析冗余的优点。提出了基于模糊投票器和神经网络的传感器估计器。模糊投票人是基于模糊投票方案的。新的SFDIA方案在FCC神经网络的基础上具有更可靠的冗余。通过带有两个陀螺仪传感器模块的四旋翼飞行器实验,验证了SFDIA方案的性能。它可以检测传感器的故障,查明是哪个传感器故障,并用其他正常的传感器替换传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of a soft wearable robotic suit on metabolic cost and gait characteristics in healthy young subjects Jumping pattern generation for one-legged jumping robot Radial basis function neural network based PID control for quad-rotor flying robot A study of eye contact for tabletop robot Multi-objective optimal operation with demand management and voltage stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1