Hysteretic performance research on high strength circular concrete-filled thin-walled steel tubular columns

Jiantao Wang, Qing Sun
{"title":"Hysteretic performance research on high strength circular concrete-filled thin-walled steel tubular columns","authors":"Jiantao Wang, Qing Sun","doi":"10.4995/ASCCS2018.2018.7287","DOIUrl":null,"url":null,"abstract":"Under violent earthquake motions, the severe damage in critical regions of structures could be ascribed to cumulative damage caused by cyclic loading. Using the high strength (HS) materials in concrete-filled steel tubular (CFST) columns is the effective way and popular tendency to promote the seismic behavior in anti-seismic design. In this paper, an experimental study on the hysteretic performance of high strength circular concrete-filled thin-walled steel tubular columns (HCFTST) columns was carried out. A total of six specimens were tested under constant axial compression combining cyclic lateral loading. The tested parameters were the different combinations of diameter-to-thickness (D/t) ratio, axial compression ratio (n) and concrete cylinder compressive strength (fc).The failure modes, load-displacement hysteretic curves, skeleton curves, dissipated energy and stiffness degradation were examined in detail. Through the experiment analysis result, it indicates that the ultimate limit state is reached as the severe local buckling and rupture of the steel tubes accompanying the core concrete crushing occur. Using high strength materials could have a larger elastic deformation capacity and the higher axial compression ratio within test scopes could motivate the potential of HS materials. In brief, the HCFTST columns with ultra-large D/t ratios under reasonable design could perform excellent hysteretic performance, which can be applied in earthquake-prone regions widely.","PeriodicalId":320267,"journal":{"name":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/ASCCS2018.2018.7287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Under violent earthquake motions, the severe damage in critical regions of structures could be ascribed to cumulative damage caused by cyclic loading. Using the high strength (HS) materials in concrete-filled steel tubular (CFST) columns is the effective way and popular tendency to promote the seismic behavior in anti-seismic design. In this paper, an experimental study on the hysteretic performance of high strength circular concrete-filled thin-walled steel tubular columns (HCFTST) columns was carried out. A total of six specimens were tested under constant axial compression combining cyclic lateral loading. The tested parameters were the different combinations of diameter-to-thickness (D/t) ratio, axial compression ratio (n) and concrete cylinder compressive strength (fc).The failure modes, load-displacement hysteretic curves, skeleton curves, dissipated energy and stiffness degradation were examined in detail. Through the experiment analysis result, it indicates that the ultimate limit state is reached as the severe local buckling and rupture of the steel tubes accompanying the core concrete crushing occur. Using high strength materials could have a larger elastic deformation capacity and the higher axial compression ratio within test scopes could motivate the potential of HS materials. In brief, the HCFTST columns with ultra-large D/t ratios under reasonable design could perform excellent hysteretic performance, which can be applied in earthquake-prone regions widely.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高强圆形薄壁钢管混凝土柱滞回性能研究
在强烈地震运动下,结构关键区域的严重损伤可归结为循环荷载的累积损伤。在钢管混凝土柱中采用高强材料是提高钢管混凝土柱抗震性能的有效途径和发展趋势。本文对高强度圆形薄壁钢管混凝土柱(HCFTST)的滞回性能进行了试验研究。共对6个试件进行了恒定轴压联合循环侧向加载试验。试验参数为径厚比(D/t)、轴压比(n)和混凝土柱抗压强度(fc)的不同组合。对其破坏模式、荷载-位移滞回曲线、骨架曲线、耗散能和刚度退化进行了详细分析。通过试验分析结果表明,随着核心混凝土的破碎,钢管发生严重的局部屈曲和破裂,达到极限状态。采用高强度材料具有较大的弹性变形能力,试验范围内较高的轴压比可以激发高强度材料的潜力。综上所述,设计合理的超大D/t比HCFTST柱具有优异的滞回性能,可广泛应用于地震易发地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel one-sided push-out test for shear connectors in composite beams Bending Moment Capacity of Stainless Steel-Concrete Composite Beams COMPARISON OF DESIGN FOR COMPOSITE COLUMNS IN STEEL AND CONCRETE ACCORDING TO EUROCODE 4 AND CHINESE DESIGN CODES An innovative concrete-steel structural system allowing for a fast and simple erection Influence of joint rigidity on the elastic buckling load of sway and non-sway steel frames
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1