S. Hossain-McKenzie, Daniel Calzada, N. Jacobs, Chris Goes, A. Summers, K. Davis, Hanyue Li, Zeyu Mao, T. Overbye, K. Shetye
{"title":"Adaptive, Cyber-Physical Special Protection Schemes to Defend the Electric Grid Against Predictable and Unpredictable Disturbances","authors":"S. Hossain-McKenzie, Daniel Calzada, N. Jacobs, Chris Goes, A. Summers, K. Davis, Hanyue Li, Zeyu Mao, T. Overbye, K. Shetye","doi":"10.1109/RWS52686.2021.9611801","DOIUrl":null,"url":null,"abstract":"Special protection schemes (SPSs) safeguard the grid by detecting predefined abnormal conditions and deploying predefined corrective actions. Utilities leverage SPSs to maintain stability, acceptable voltages, and loading limits during disturbances. However, traditional SPSs cannot defend against unpredictable disturbances. Events such as cyber attacks, extreme weather, and electromagnetic pulses have unpredictable trajectories and require adaptive response. Therefore, we propose a harmonized automatic relay mitigation of nefarious intentional events (HARMONIE)-SPS that learns system conditions, mitigates cyber-physical consequences, and preserves grid operation during both predictable and unpredictable disturbances. In this paper, we define the HARMONIE-SPS approach, detail progress on its development, and provide initial results using a WSCC 9-bus system.","PeriodicalId":294639,"journal":{"name":"2021 Resilience Week (RWS)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Resilience Week (RWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS52686.2021.9611801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Special protection schemes (SPSs) safeguard the grid by detecting predefined abnormal conditions and deploying predefined corrective actions. Utilities leverage SPSs to maintain stability, acceptable voltages, and loading limits during disturbances. However, traditional SPSs cannot defend against unpredictable disturbances. Events such as cyber attacks, extreme weather, and electromagnetic pulses have unpredictable trajectories and require adaptive response. Therefore, we propose a harmonized automatic relay mitigation of nefarious intentional events (HARMONIE)-SPS that learns system conditions, mitigates cyber-physical consequences, and preserves grid operation during both predictable and unpredictable disturbances. In this paper, we define the HARMONIE-SPS approach, detail progress on its development, and provide initial results using a WSCC 9-bus system.