Fast GPU parallel N-Body tree traversal with Simulated Wide-Warp

Wagner M. Nunan Zola, L. C. E. Bona, Fabiano Silva
{"title":"Fast GPU parallel N-Body tree traversal with Simulated Wide-Warp","authors":"Wagner M. Nunan Zola, L. C. E. Bona, Fabiano Silva","doi":"10.1109/PADSW.2014.7097874","DOIUrl":null,"url":null,"abstract":"The Barnes-Hut algorithm is a widely used approximation method for the N-Body simulation problem. The irregular nature of this tree walking code presents interesting challenges for its computation on parallel systems. Additional problems arise in effectively exploiting the processing capacity of GPU architectures. We propose and investigate the applicability of software Simulated Wide-Warps (SWW) in this context. To this extent, we explicitly deal with dynamic irregular patterns in data accesses with data remapping and data transformation, by controlling execution flow divergence of threads. We present a new compact data-structure for the tree layout, GPU parallel algorithms for tree transformation and parallel walking using SWW. Benefits of our techniques are in transposing the tree algorithm to execute regular patterns to match the GPU model. Our experiments show significant performance improvement over the best known GPU solutions to this algorithm.","PeriodicalId":421740,"journal":{"name":"2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS)","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PADSW.2014.7097874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The Barnes-Hut algorithm is a widely used approximation method for the N-Body simulation problem. The irregular nature of this tree walking code presents interesting challenges for its computation on parallel systems. Additional problems arise in effectively exploiting the processing capacity of GPU architectures. We propose and investigate the applicability of software Simulated Wide-Warps (SWW) in this context. To this extent, we explicitly deal with dynamic irregular patterns in data accesses with data remapping and data transformation, by controlling execution flow divergence of threads. We present a new compact data-structure for the tree layout, GPU parallel algorithms for tree transformation and parallel walking using SWW. Benefits of our techniques are in transposing the tree algorithm to execute regular patterns to match the GPU model. Our experiments show significant performance improvement over the best known GPU solutions to this algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟Wide-Warp的快速GPU并行n体树遍历
Barnes-Hut算法是一种广泛应用于n体仿真问题的近似方法。这种树遍历代码的不规则性质为其在并行系统上的计算提出了有趣的挑战。在有效利用GPU架构的处理能力方面出现了其他问题。在此背景下,我们提出并研究了软件模拟宽翘曲(SWW)的适用性。在这种程度上,我们通过控制线程的执行流发散,显式地处理数据访问中的数据重映射和数据转换的动态不规则模式。我们提出了一种新的用于树布局的紧凑数据结构、用于树转换的GPU并行算法和基于SWW的并行行走。我们技术的好处是将树算法转换为执行规则模式以匹配GPU模型。我们的实验表明,与最知名的GPU解决方案相比,该算法的性能有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal bandwidth allocation with dynamic multi-path routing for non-critical traffic in AFDX networks Sensor-free corner shape detection by wireless networks Accelerated variance reduction methods on GPU Fault-Tolerant bi-directional communications in web-based applications Performance analysis of HPC applications with irregular tree data structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1