Attention Unet++: A Nested Attention-Aware U-Net for Liver CT Image Segmentation

Chen Li, Yusong Tan, W. Chen, Xin Luo, Yuanming Gao, Xiaogang Jia, Zhiying Wang
{"title":"Attention Unet++: A Nested Attention-Aware U-Net for Liver CT Image Segmentation","authors":"Chen Li, Yusong Tan, W. Chen, Xin Luo, Yuanming Gao, Xiaogang Jia, Zhiying Wang","doi":"10.1109/ICIP40778.2020.9190761","DOIUrl":null,"url":null,"abstract":"Liver cancer is one of the cancers with the highest mortality. In order to help doctors diagnose and treat liver lesion, an automatic liver segmentation model is urgently needed due to manually segmentation is time-consuming and error-prone. In this paper, we propose a nested attention-aware segmentation network, named Attention UNet++. Our proposed method has a deep supervised encoder-decoder architecture and a redesigned dense skip connection. Attention UNet++ introduces attention mechanism between nested convolutional blocks so that the features extracted at different levels can be merged with a task-related selection. Besides, due to the introduction of deep supervision, the prediction speed of the pruned network is accelerated at the cost of modest performance degradation. We evaluated proposed model on MICCAI 2017 Liver Tumor Segmentation (LiTS) Challenge Dataset. Attention UNet++ achieved very competitive performance for liver segmentation.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

Abstract

Liver cancer is one of the cancers with the highest mortality. In order to help doctors diagnose and treat liver lesion, an automatic liver segmentation model is urgently needed due to manually segmentation is time-consuming and error-prone. In this paper, we propose a nested attention-aware segmentation network, named Attention UNet++. Our proposed method has a deep supervised encoder-decoder architecture and a redesigned dense skip connection. Attention UNet++ introduces attention mechanism between nested convolutional blocks so that the features extracted at different levels can be merged with a task-related selection. Besides, due to the introduction of deep supervision, the prediction speed of the pruned network is accelerated at the cost of modest performance degradation. We evaluated proposed model on MICCAI 2017 Liver Tumor Segmentation (LiTS) Challenge Dataset. Attention UNet++ achieved very competitive performance for liver segmentation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于肝脏CT图像分割的嵌套注意力感知U-Net
肝癌是死亡率最高的癌症之一。为了帮助医生诊断和治疗肝脏病变,由于人工分割费时且容易出错,迫切需要一种自动肝脏分割模型。在本文中,我们提出了一个嵌套的注意力感知分割网络,命名为Attention unet++。我们提出的方法具有深度监督编码器-解码器架构和重新设计的密集跳过连接。unnet++在嵌套的卷积块之间引入了注意机制,使得在不同层次提取的特征可以与任务相关的选择合并。此外,由于引入了深度监督,以适度的性能下降为代价加快了修剪后网络的预测速度。我们在MICCAI 2017肝脏肿瘤分割(LiTS)挑战数据集上评估了该模型。注意:unnet++在肝脏分割方面取得了非常有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1