Drone Classification with a Convolutional Neural Network Applied to Raw IQ Data

S. Kunze, B. Saha
{"title":"Drone Classification with a Convolutional Neural Network Applied to Raw IQ Data","authors":"S. Kunze, B. Saha","doi":"10.23919/AT-AP-RASC54737.2022.9814170","DOIUrl":null,"url":null,"abstract":"With the increasing popularity of civilian drones, the need for technical detection and classification systems rises. In this paper a machine learning based approach for detection and classification of radio frequency signals from drones is proposed. As data source the DroneDetect_V2 data set is used. The raw IQ data is processed by a convolutional neural network, without the need for much pre-processeing or any feature engineering. With this approach an accuracy of 99 % for detection and between 72 % and 94 % for classifi-cation is reached.","PeriodicalId":356067,"journal":{"name":"2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AT-AP-RASC54737.2022.9814170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

With the increasing popularity of civilian drones, the need for technical detection and classification systems rises. In this paper a machine learning based approach for detection and classification of radio frequency signals from drones is proposed. As data source the DroneDetect_V2 data set is used. The raw IQ data is processed by a convolutional neural network, without the need for much pre-processeing or any feature engineering. With this approach an accuracy of 99 % for detection and between 72 % and 94 % for classifi-cation is reached.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用于原始IQ数据的卷积神经网络无人机分类
随着民用无人机的日益普及,对技术检测和分类系统的需求也在上升。本文提出了一种基于机器学习的无人机射频信号检测与分类方法。使用DroneDetect_V2数据集作为数据源。原始IQ数据由卷积神经网络处理,不需要太多的预处理或任何特征工程。该方法的检测准确率为99%,分类准确率为72% ~ 94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Packaging of a Beamforming IC by Laser Enhanced Direct Print Additive Manufacturing (LE-DPAM) Multifunctional and Deployable Origami Antennas 3D Miniaturization Method and its Application to a Wearable Vivaldi Antenna Design of an impedance matched near field passive antenna for medical microwave radiometry Design of a mobile RFI monitoring station for DSA-2000 candidate sites surveys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1