Head pose estimation using random forest and texture analysis

Min-Joo Kang, Hana Lee, Jewon Kang
{"title":"Head pose estimation using random forest and texture analysis","authors":"Min-Joo Kang, Hana Lee, Jewon Kang","doi":"10.1109/APSIPA.2016.7820742","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new head pose estimation technique based on Random Forest (RF) and Multi-scale Block Local Block Pattern (MB-LBP) features. In the proposed technique we aim to learn a randomized tree with useful attributes to improve the estimation accuracy and tolerance of occlusions and illumination. Precisely, a number of MB-LBP feature spaces are generated from a face image, and random inputs and random features such as the MB-LBP scale parameter and the block coordinate in the pool are used for building the tree. Furthermore we develop a split function considering the properties of the uniform LBP, applied to each internal node of the tree to maximize the information gain at that node. The randomized trees put together in RF are used for the final decision in a Maximum-A-Posteriori criterion. Experimental results demonstrate that the proposed technique provides impressive performance in the head pose estimation in various conditions of illumination, poses, expressions, and facial occlusions.","PeriodicalId":409448,"journal":{"name":"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2016.7820742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a new head pose estimation technique based on Random Forest (RF) and Multi-scale Block Local Block Pattern (MB-LBP) features. In the proposed technique we aim to learn a randomized tree with useful attributes to improve the estimation accuracy and tolerance of occlusions and illumination. Precisely, a number of MB-LBP feature spaces are generated from a face image, and random inputs and random features such as the MB-LBP scale parameter and the block coordinate in the pool are used for building the tree. Furthermore we develop a split function considering the properties of the uniform LBP, applied to each internal node of the tree to maximize the information gain at that node. The randomized trees put together in RF are used for the final decision in a Maximum-A-Posteriori criterion. Experimental results demonstrate that the proposed technique provides impressive performance in the head pose estimation in various conditions of illumination, poses, expressions, and facial occlusions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机森林和纹理分析的头部姿态估计
本文提出了一种基于随机森林(RF)和多尺度块局部块模式(MB-LBP)特征的头部姿态估计方法。在该技术中,我们的目标是学习具有有用属性的随机树,以提高估计精度和对遮挡和光照的容忍度。精确地说,从人脸图像中生成多个MB-LBP特征空间,并使用随机输入和随机特征(如MB-LBP尺度参数和池中的块坐标)来构建树。此外,考虑到均匀LBP的性质,我们开发了一个分裂函数,应用于树的每个内部节点,以最大化该节点的信息增益。随机树放在一起在RF中用于最大后验标准的最终决策。实验结果表明,该方法在各种光照、姿态、表情和面部遮挡条件下的头部姿态估计具有令人印象深刻的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bilateral hemiface feature representation learning for pose robust facial expression recognition Voice-pathology analysis based on AR-HMM Locality sensitive discriminant analysis for speaker verification On the training of DNN-based average voice model for speech synthesis A study on target feature activation and normalization and their impacts on the performance of DNN based speech dereverberation systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1