{"title":"Microstrip Phased Array Antenna With Small Element Space for 5G Millimeter-Wave Applications","authors":"Zhewei Zhao, Yuqing Zhu, Changjiang Deng","doi":"10.1109/ICEICT51264.2020.9334191","DOIUrl":null,"url":null,"abstract":"In this paper, a compact dual-layer wide-angle scanning 1×4 microstrip array operating at 28 GHz is proposed for 5G applications. The microstrip element is loaded with capacitive via fences to reduce the size of the element and widen the beamwidth. The element space of the array is merely 0.34λ0 (λ0is the wavelength at 28 GHz in free space). U-shaped decoupling structure is introduced between the adjacent element antennas to reduce mutual coupling. The simulated beam scanning ranges from −50° to +50° within 3 dB gain variation, which is suitable for wide-angle scanning applications.","PeriodicalId":124337,"journal":{"name":"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT51264.2020.9334191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, a compact dual-layer wide-angle scanning 1×4 microstrip array operating at 28 GHz is proposed for 5G applications. The microstrip element is loaded with capacitive via fences to reduce the size of the element and widen the beamwidth. The element space of the array is merely 0.34λ0 (λ0is the wavelength at 28 GHz in free space). U-shaped decoupling structure is introduced between the adjacent element antennas to reduce mutual coupling. The simulated beam scanning ranges from −50° to +50° within 3 dB gain variation, which is suitable for wide-angle scanning applications.