Swarm Decomposition Enhances the Discrimination of Cardiac Arrhythmias in Varied-Lead ECG Using ResNet-BiLSTM Network Activations

M. Alkhodari, G. Apostolidis, Charilaos A. Zisou, L. Hadjileontiadis, A. Khandoker
{"title":"Swarm Decomposition Enhances the Discrimination of Cardiac Arrhythmias in Varied-Lead ECG Using ResNet-BiLSTM Network Activations","authors":"M. Alkhodari, G. Apostolidis, Charilaos A. Zisou, L. Hadjileontiadis, A. Khandoker","doi":"10.23919/cinc53138.2021.9662742","DOIUrl":null,"url":null,"abstract":"The standard screening tool for cardiac arrhythmias remains to be the 12-lead electrocardiography (ECG). Despite carrying rich information about different types of arrhythmias, it is considered bulky, high-cost, and often hard to use. In this study, we sought to investigate the efficiency of using 6-lead, 4-lead, 3 -lead, and 2-lead ECG in discriminating between 26 arrhythmia types and compare them with the standard 12-lead ECG. as part of PhysioNet/Computing in Cardiology 2021 Challenge. Our team, Care4MyHeart, developed a deep learning approach based on residual convolutional neural networks and Bi-directional long short term memory (ResNet-BiLSTM) to extract deep-activated features from ECG oscillatory components obtained using a novel swarm decomposition (SWD) algorithm. Alongside age and sex, these automated features were combined with hand-crafted features from heart rate variability and SWD components for training and classification. Our approach achieved a challenge score of 0.45, 0.43, 0.44, 0.43, and 0.42 using 10-fold cross-validation using the training set and 0.25, 0.23, 0.24, 0.22, and 0.20 using the hidden test set for 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead, respectively. Our team was ranked the 31/38 with an average all-lead test score of 0.22.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The standard screening tool for cardiac arrhythmias remains to be the 12-lead electrocardiography (ECG). Despite carrying rich information about different types of arrhythmias, it is considered bulky, high-cost, and often hard to use. In this study, we sought to investigate the efficiency of using 6-lead, 4-lead, 3 -lead, and 2-lead ECG in discriminating between 26 arrhythmia types and compare them with the standard 12-lead ECG. as part of PhysioNet/Computing in Cardiology 2021 Challenge. Our team, Care4MyHeart, developed a deep learning approach based on residual convolutional neural networks and Bi-directional long short term memory (ResNet-BiLSTM) to extract deep-activated features from ECG oscillatory components obtained using a novel swarm decomposition (SWD) algorithm. Alongside age and sex, these automated features were combined with hand-crafted features from heart rate variability and SWD components for training and classification. Our approach achieved a challenge score of 0.45, 0.43, 0.44, 0.43, and 0.42 using 10-fold cross-validation using the training set and 0.25, 0.23, 0.24, 0.22, and 0.20 using the hidden test set for 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead, respectively. Our team was ranked the 31/38 with an average all-lead test score of 0.22.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用ResNet-BiLSTM网络激活,群分解增强了多导联心电图心律失常的识别
心律失常的标准筛查工具仍然是12导联心电图(ECG)。尽管携带了关于不同类型心律失常的丰富信息,但它被认为体积庞大,成本高,而且通常难以使用。在这项研究中,我们试图探讨使用6导联、4导联、3导联和2导联心电图区分26种心律失常类型的效率,并将其与标准12导联心电图进行比较。作为PhysioNet/Computing in Cardiology 2021挑战赛的一部分。我们的团队Care4MyHeart开发了一种基于残差卷积神经网络和双向长短期记忆(ResNet-BiLSTM)的深度学习方法,从使用新型群分解(SWD)算法获得的ECG振荡分量中提取深度激活特征。除了年龄和性别之外,这些自动特征还与心率变异性和SWD组件的手工特征相结合,用于训练和分类。我们的方法使用训练集进行10倍交叉验证,获得了0.45、0.43、0.44、0.43和0.42的挑战得分,使用隐藏测试集分别为0.25、0.23、0.24、0.22和0.20,分别为12导联、6导联、4导联、3导联和2导联。我们队全铅测试平均成绩为0.22,排名第31/38。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Hydroxychloroquine Dosage on the Occurrence of Arrhythmia in COVID-19 Infected Ventricle Guinea Pig ECG Changes under the Effect of New Drug Candidate TP28b Electrocardiographic Imaging of Sinus Rhythm in Pig Hearts Using Bayesian Maximum A Posteriori Estimation Sensitivity Analysis and Parameter Identification of a Cardiovascular Model in Aortic Stenosis Semi-Supervised vs. Supervised Learning for Discriminating Atrial Flutter Mechanisms Using the 12-lead ECG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1