{"title":"A novel multiple particle tracking algorithm for noisy in vivo data by minimal path optimization within the spatio-temporal volume","authors":"Q. Xue, M. Leake","doi":"10.1109/ISBI.2009.5193263","DOIUrl":null,"url":null,"abstract":"Automated tracking of fluorescent particles in living cells is vital for subcellular stoichoimetry analysis [1, 2]. Here, a new automatic tracking algorithm is described to track multiple particles, based on minimal path optimization. After linking feature points frame-by-frame, spatio-temporal data from time-lapse microscopy are combined together to construct a transformed 3D volume. The trajectories are then generated from the minimal energy path as defined by the solution of the time-dependent partial differential equation using a gray weighted distance transform dynamic programming method. Results from simulated and experimental data demonstrate that our novel automatic method gives sub-pixel accuracy even for very noisy images.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5193263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Automated tracking of fluorescent particles in living cells is vital for subcellular stoichoimetry analysis [1, 2]. Here, a new automatic tracking algorithm is described to track multiple particles, based on minimal path optimization. After linking feature points frame-by-frame, spatio-temporal data from time-lapse microscopy are combined together to construct a transformed 3D volume. The trajectories are then generated from the minimal energy path as defined by the solution of the time-dependent partial differential equation using a gray weighted distance transform dynamic programming method. Results from simulated and experimental data demonstrate that our novel automatic method gives sub-pixel accuracy even for very noisy images.