{"title":"An inverter using buck-boost type chopper circuits for popular small-scale photovoltaic power system","authors":"N. Kasa, T. Iida, H. Iwamoto","doi":"10.1109/IECON.1999.822194","DOIUrl":null,"url":null,"abstract":"This paper presents a newly developed transformer-less single phase inverter for a photovoltaic (PV) power system. The proposed system consists of two sets of a PV array and buck-boost type chopper circuit. However, it is afraid that the system has lower \"using rate\" of PV energy than that of the ordinary PV system, as each PV array is only operated in the half duration of the AC power frequency. In this paper, it is also discussed how to increase this \"using rate\" by varying the connected capacitor between PV array terminals. The perturbation and observation method is adapted to the maximum power tracking in our PV systems. We adopt the wavelet transform to detect a power outage. The experimental data shows that this new inverter can supply AC power to the utility grid line with the power factor nearly unity.","PeriodicalId":378710,"journal":{"name":"IECON'99. Conference Proceedings. 25th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.99CH37029)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON'99. Conference Proceedings. 25th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.99CH37029)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.1999.822194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 84
Abstract
This paper presents a newly developed transformer-less single phase inverter for a photovoltaic (PV) power system. The proposed system consists of two sets of a PV array and buck-boost type chopper circuit. However, it is afraid that the system has lower "using rate" of PV energy than that of the ordinary PV system, as each PV array is only operated in the half duration of the AC power frequency. In this paper, it is also discussed how to increase this "using rate" by varying the connected capacitor between PV array terminals. The perturbation and observation method is adapted to the maximum power tracking in our PV systems. We adopt the wavelet transform to detect a power outage. The experimental data shows that this new inverter can supply AC power to the utility grid line with the power factor nearly unity.