CSCNet: A Shallow Single Column Network for Crowd Counting

Zhida Zhou, Li Su, Guorong Li, Yifan Yang, Qingming Huang
{"title":"CSCNet: A Shallow Single Column Network for Crowd Counting","authors":"Zhida Zhou, Li Su, Guorong Li, Yifan Yang, Qingming Huang","doi":"10.1109/VCIP49819.2020.9301855","DOIUrl":null,"url":null,"abstract":"Crowd counting in complex scene is an important but challenge task. The scale variation of crowd makes the shallow network hard to extract effective features. In this paper, we propose a shallow single column network named CSCNet for crowd counting. The key component is complementary scale context block (CSCB). It is designed to capture complementary scale context and obtains a high accuracy with limited depth of the network. As far as we know, CSCNet is the shallowest single column network in existing works. We demonstrate our methods on three challenge benchmarks. Compared to state-of-the-art methods, CSCNet achieves comparable accuracy with much less complexity. CSCNet provides an alternative to achieve comparable or even better performance with about 30% of depth and 50% of width decrease. Besides, CSCNet performs more stably on both sparse and congested crowd scenes.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Crowd counting in complex scene is an important but challenge task. The scale variation of crowd makes the shallow network hard to extract effective features. In this paper, we propose a shallow single column network named CSCNet for crowd counting. The key component is complementary scale context block (CSCB). It is designed to capture complementary scale context and obtains a high accuracy with limited depth of the network. As far as we know, CSCNet is the shallowest single column network in existing works. We demonstrate our methods on three challenge benchmarks. Compared to state-of-the-art methods, CSCNet achieves comparable accuracy with much less complexity. CSCNet provides an alternative to achieve comparable or even better performance with about 30% of depth and 50% of width decrease. Besides, CSCNet performs more stably on both sparse and congested crowd scenes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CSCNet:用于人群计数的浅单列网络
复杂场景中的人群计数是一项重要而富有挑战性的任务。人群的尺度变化使得浅层网络难以提取有效特征。本文提出了一种用于人群统计的浅单列网络CSCNet。关键部件是互补尺度上下文块(CSCB)。它旨在捕获互补尺度上下文,并在有限的网络深度下获得较高的精度。据我们所知,CSCNet是现有工程中最浅的单柱网。我们在三个挑战基准上演示了我们的方法。与最先进的方法相比,CSCNet以更低的复杂性实现了相当的准确性。CSCNet提供了一种替代方案,可以在深度减少30%、宽度减少50%的情况下实现相当甚至更好的性能。此外,CSCNet在稀疏和拥挤的人群场景中都表现得更加稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Mixed Appearance-based and Coding Distortion-based CNN Fusion Approach for In-loop Filtering in Video Coding APL: Adaptive Preloading of Short Video with Lyapunov Optimization A Novel Visual Analysis Oriented Rate Control Scheme for HEVC A Theory of Occlusion for Improving Rendering Quality of Views A Progressive Fast CU Split Decision Scheme for AVS3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1