Face recognition with improved deep belief networks

Rong Fan, Wenxin Hu
{"title":"Face recognition with improved deep belief networks","authors":"Rong Fan, Wenxin Hu","doi":"10.1109/FSKD.2017.8393043","DOIUrl":null,"url":null,"abstract":"Deep learning techniques have become the state-of-the-art approach for classification in artificial intelligence, and applied in many widespread subjects. Deep Belief Networks (DBNs) are one of the most successful models. DBNs consist of many layers of hidden factors along with a greedy layer-wise unsupervised learning algorithm. In our paper, we brought forward an approach to face recognition based on dropout DBNs, which made good performances on small training sets.","PeriodicalId":236093,"journal":{"name":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2017.8393043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Deep learning techniques have become the state-of-the-art approach for classification in artificial intelligence, and applied in many widespread subjects. Deep Belief Networks (DBNs) are one of the most successful models. DBNs consist of many layers of hidden factors along with a greedy layer-wise unsupervised learning algorithm. In our paper, we brought forward an approach to face recognition based on dropout DBNs, which made good performances on small training sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进深度信念网络的人脸识别
深度学习技术已经成为人工智能领域最先进的分类方法,并在许多广泛的学科中得到应用。深度信念网络(dbn)是最成功的模型之一。dbn由多层隐藏因子和贪婪的分层无监督学习算法组成。本文提出了一种基于dropout dbn的人脸识别方法,该方法在小训练集上取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Space syntax and time distance based analysis on the influences of the subways to the pubic traffic accessibility in Nanchang city Designing fuzzy apparatus to model dyslexic individual symptoms for clinical use A kNN classifier optimized by P systems Research on optimal operation of cascade hydropower station based on improved biogeography-based optimization algorithm An estimation algorithm of time-varying channels in the OFDM communication system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1