Identification of a sufficient number of the best attributes in the intuitionistic fuzzy models

E. Szmidt, J. Kacprzyk, Paweł Bujnowski
{"title":"Identification of a sufficient number of the best attributes in the intuitionistic fuzzy models","authors":"E. Szmidt, J. Kacprzyk, Paweł Bujnowski","doi":"10.7546/nifs.2023.29.2.144-156","DOIUrl":null,"url":null,"abstract":"Dimension reduction of the models, i.e., pointing out only the necessary number of input variables (attributes, features) is an important task enabling the efficient performance of different algorithms. This paper is a continuation of our previous works on a new method of selection of the attributes in the models making use of Atanassov's intuitionistic fuzzy sets. We consider classification problems trying to point out the reduced number of the attributes and still obtain satisfactory results. We investigate the previously proposed method in more details comparing its performance with a well-known method of extraction parameters, namely Principal Component Analysis (PCA), and with a well-known method of selecting the attributes in which the so-called Gain Ratio is used. We illustrate our considerations using benchmark data from UCI Machine Learning Repository.","PeriodicalId":433687,"journal":{"name":"Notes on Intuitionistic Fuzzy Sets","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Intuitionistic Fuzzy Sets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nifs.2023.29.2.144-156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dimension reduction of the models, i.e., pointing out only the necessary number of input variables (attributes, features) is an important task enabling the efficient performance of different algorithms. This paper is a continuation of our previous works on a new method of selection of the attributes in the models making use of Atanassov's intuitionistic fuzzy sets. We consider classification problems trying to point out the reduced number of the attributes and still obtain satisfactory results. We investigate the previously proposed method in more details comparing its performance with a well-known method of extraction parameters, namely Principal Component Analysis (PCA), and with a well-known method of selecting the attributes in which the so-called Gain Ratio is used. We illustrate our considerations using benchmark data from UCI Machine Learning Repository.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在直觉模糊模型中识别足够数量的最佳属性
模型的降维,即只指出必要数量的输入变量(属性、特征),是一项重要的任务,使不同的算法能够有效地执行。本文是我们利用Atanassov的直觉模糊集在模型中选择属性的一种新方法的延续。我们考虑分类问题,试图指出减少的属性数量,仍然得到令人满意的结果。我们对先前提出的方法进行了更详细的研究,将其与众所周知的提取参数的方法,即主成分分析(PCA),以及使用所谓增益比选择属性的方法进行了比较。我们使用来自UCI机器学习存储库的基准数据来说明我们的考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interpreting the results of InterCriteria Analysis: Pareto principle at work n-Dimensional intuitionistic fuzzy index matrix representation of multidimensional data partitioning methods InterCriteria Analysis with weight coefficients of objects or criteria Intuitionistic fuzzy neural network with filtering functions. An index matrix interpretation Evaluating the performance of catalyst and feedstocks in the fluid catalytic cracking process: Application of InterCriteria Analysis with weight coefficients of the criteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1