PENDEKATAN BERBASIS KECERDASAN BUATAN DENGAN METODE NAÏVE BAYES UNTUK WEBSITE BAZNAS

Endi Gunawan, Johan Wahyudi, Yuslena Sari
{"title":"PENDEKATAN BERBASIS KECERDASAN BUATAN DENGAN METODE NAÏVE BAYES UNTUK WEBSITE BAZNAS","authors":"Endi Gunawan, Johan Wahyudi, Yuslena Sari","doi":"10.20527/JTIULM.V6I1.68","DOIUrl":null,"url":null,"abstract":"Badan amil zakat nasional (BAZNAS) adalah badan resmi nasional dalam menyalurkan zakat. Zakat adalah kewajiban umat Islam. Hal tersebut dijelaskan dalam kitab suci Alquran. Zakat perlu disalurkan dengan adil. Banyaknya data penerima zakat menyebabkan penyaluran sering terkendala. Dengan klasifikasi zakat antara fakir dan miskin akan menjadi solusi untuk kendala data yang banyak. Teknik kecerdasan buatan yang digunakan pada penelitian ini adalah Naïve Bayes Classifier. Ini adalah teknik klasifikasi berdasarkan Teorema Bayes dengan asumsi independensi antar prediktor. Secara sederhana, pengklasifikasian Naive Bayes mengasumsikan bahwa keberadaan fitur tertentu di kelas tidak terkait dengan keberadaan fitur lainnya. Label data penerima zakat ini ada dua, yaitu fakir dan miskin. Kecerdasan buatan sebagai metode dalam pembuatan prototype sistem pada website BAZNAS dalam penentuan penerima zakat. Pengukuran performa metode naïve bayes classifier menggunakan confusion matrix. Hasil dari metode naïve bayes classifier dalam mengklasifikasi penerima zakat cukup baik yaitu 96%.","PeriodicalId":330464,"journal":{"name":"Jurnal Teknologi Informasi Universitas Lambung Mangkurat (JTIULM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Informasi Universitas Lambung Mangkurat (JTIULM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20527/JTIULM.V6I1.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Badan amil zakat nasional (BAZNAS) adalah badan resmi nasional dalam menyalurkan zakat. Zakat adalah kewajiban umat Islam. Hal tersebut dijelaskan dalam kitab suci Alquran. Zakat perlu disalurkan dengan adil. Banyaknya data penerima zakat menyebabkan penyaluran sering terkendala. Dengan klasifikasi zakat antara fakir dan miskin akan menjadi solusi untuk kendala data yang banyak. Teknik kecerdasan buatan yang digunakan pada penelitian ini adalah Naïve Bayes Classifier. Ini adalah teknik klasifikasi berdasarkan Teorema Bayes dengan asumsi independensi antar prediktor. Secara sederhana, pengklasifikasian Naive Bayes mengasumsikan bahwa keberadaan fitur tertentu di kelas tidak terkait dengan keberadaan fitur lainnya. Label data penerima zakat ini ada dua, yaitu fakir dan miskin. Kecerdasan buatan sebagai metode dalam pembuatan prototype sistem pada website BAZNAS dalam penentuan penerima zakat. Pengukuran performa metode naïve bayes classifier menggunakan confusion matrix. Hasil dari metode naïve bayes classifier dalam mengklasifikasi penerima zakat cukup baik yaitu 96%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于人工智能的方法,用火箭筒的天真的方法
国家电视台amil zakat(火箭筒nas)是国家官方机构。Zakat是穆斯林的责任。这在《古兰经》中得到了解释。天课需要公平分配。zakat接收数据的数量导致通道经常受阻。在fakir和穷人之间的zakat分类将是解决大量数据问题的方法。这项研究使用的人工智能技术是天真的贝斯经典费尔。这是基于Bayes定理的分类技术,假定预测之间的独立性。简单地说,天真的假设假设类中某些特征的存在与其他特征的存在无关。zakat接收数据的标签有两个,分别是穷人和穷人。人工智能是在BAZNAS网站建立系统原型的一种方法,用于确定zakat接收器。用孔子矩阵来测量天真的贝斯经典方法。nave bayes classifier对zakat接收器的分类很好,结果是96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WEBSITE DESIGN INFORMATION SYSTEM OF RECORDING OFFENS AND PUNISHMENT STUDENTS SMK MUHAMMADIYAH 8 SILIRAGUNG USE WATERFALL DEVELOPMENT METHOD IDENTIFYING AND FIXING UX-FRICTION EMPLOYEE DEVELOPMENT WEBSITE WITH MIXED APPROACH HEART FRAMEWORK AND USABILITY TESTING GEOLOGY AND THE STUDY OF HEAVY METAL IMPACTS ON ENVIRONMENTAL QUALITY ASSESSMENT USING ARCGIS FOR INTERPRETATION DISTRIBUTION CLASSIFICATION OF STUDENT STUDY PERIOD USING NEURAL NETWORK BACKPROPAGATION ALGORITHM BASED ON ENTRY PATH (CASE STUDY: FACULTY OF ENGINEERING, UNIVERSITAS LAMBUNG MANGKURAT) OPTIMIZATION OF CNN + MOBILENETV3 FOR INSECT IDENTIFICATION: TOWARD HIGH ACCURACY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1