Probabilistic unsupervised Chinese sentence compression

Jinguang Chen, Tingting He, Zhuoming Gui, Fang Li
{"title":"Probabilistic unsupervised Chinese sentence compression","authors":"Jinguang Chen, Tingting He, Zhuoming Gui, Fang Li","doi":"10.1109/GRC.2009.5255158","DOIUrl":null,"url":null,"abstract":"Research on sentence compression has been undergoing for many years in other languages, especially in English, but research on Chinese sentence compression is rarely found. In this paper, we describe an efficient probabilistic and syntactic approach to Chinese sentence compression. We introduce the classical noisy-channel approach into Chinese sentence compression and improve it in many ways. Since there is no parallel training corpus in Chinese, we use the unsupervised learning method. This paper also presents a novel bottom-up optimizing algorithm which considers both bigram and syntactic probabilities for generating candidate compressed sentences. We evaluate results against manual compressions and a simple baseline. The experiments show the effectiveness of the proposed approach.","PeriodicalId":388774,"journal":{"name":"2009 IEEE International Conference on Granular Computing","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2009.5255158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Research on sentence compression has been undergoing for many years in other languages, especially in English, but research on Chinese sentence compression is rarely found. In this paper, we describe an efficient probabilistic and syntactic approach to Chinese sentence compression. We introduce the classical noisy-channel approach into Chinese sentence compression and improve it in many ways. Since there is no parallel training corpus in Chinese, we use the unsupervised learning method. This paper also presents a novel bottom-up optimizing algorithm which considers both bigram and syntactic probabilities for generating candidate compressed sentences. We evaluate results against manual compressions and a simple baseline. The experiments show the effectiveness of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
概率无监督中文句子压缩
其他语言,尤其是英语,对句子压缩的研究已经进行了很多年,但对汉语句子压缩的研究却很少。本文描述了一种基于概率和句法的汉语句子压缩方法。我们将经典的噪声信道方法引入到汉语句子压缩中,并对其进行了多方面的改进。由于汉语没有并行训练语料库,我们使用无监督学习方法。本文还提出了一种新的自下而上的优化算法,该算法同时考虑了双元图和句法概率来生成候选压缩句子。我们根据手动按压和简单基线来评估结果。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On SP-closedness in L-topological spaces A comprehensive evaluation method based on extenics and rough set A two-step approach for solving the flexible job shop scheduling problem A fast and accurate collaborative filter Attribute Grid Computer based on Qualitative Mapping and its application in pattern Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1