Global soil NO emissions for Atmospheric Chemical Transport Modelling: CAMS-GLOB-SOIL v2.2

D. Simpson, S. Darras
{"title":"Global soil NO emissions for Atmospheric Chemical Transport Modelling: CAMS-GLOB-SOIL v2.2","authors":"D. Simpson, S. Darras","doi":"10.5194/ESSD-2021-221","DOIUrl":null,"url":null,"abstract":"Abstract. We present a dataset of global soil NO emissions comprising gridded monthly data and the corresponding 3-hourly weight factors, suitable for atmospheric chemistry modelling. Data are provided globally at 0.5° × 0.5° degrees horizontal resolution, and with monthly time resolution over the period 2000–2018. Emissions are provided as total values and also with separate data for soil NO emissions from background biome values, and those induced by fertilizers/manure, pulsing effects, and atmospheric deposition, so that users can include, exclude or modify each component if wanted. This paper presents the emission algorithms and their data-sources, some comments on the availability of soil NO emissions in other inventories (and how to avoid double-counting), and finally some preliminary modelling results and comparison with observed data. This dataset was constructed as part of the Copernicus Atmosphere Monitoring Service (CAMS), with the dataset referred to as CAMS-GLOB-SOIL v2.2. These data are available through the Copernicus Atmosphere Data Store (ADS) system, (https://doi.org/10.24380/kz2r-fe18, last access June 2021, Simpson 2021a) or through the Emissions of atmospheric Compounds and Compilation of Ancillary Data (ECCAD) system (https://eccad.aeris-data.fr/, last access June 2021). For review purposes, ECCAD has set up an anonymous repository where a subset of the CAMS-GLOB-SOIL v2.2 data can be accessed directly (https://eccad.aeris-data.fr/essd-surf-emis-cams-soil/, Last access July 2021, Simpson 2021b).\n","PeriodicalId":326085,"journal":{"name":"Earth System Science Data Discussions","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/ESSD-2021-221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract. We present a dataset of global soil NO emissions comprising gridded monthly data and the corresponding 3-hourly weight factors, suitable for atmospheric chemistry modelling. Data are provided globally at 0.5° × 0.5° degrees horizontal resolution, and with monthly time resolution over the period 2000–2018. Emissions are provided as total values and also with separate data for soil NO emissions from background biome values, and those induced by fertilizers/manure, pulsing effects, and atmospheric deposition, so that users can include, exclude or modify each component if wanted. This paper presents the emission algorithms and their data-sources, some comments on the availability of soil NO emissions in other inventories (and how to avoid double-counting), and finally some preliminary modelling results and comparison with observed data. This dataset was constructed as part of the Copernicus Atmosphere Monitoring Service (CAMS), with the dataset referred to as CAMS-GLOB-SOIL v2.2. These data are available through the Copernicus Atmosphere Data Store (ADS) system, (https://doi.org/10.24380/kz2r-fe18, last access June 2021, Simpson 2021a) or through the Emissions of atmospheric Compounds and Compilation of Ancillary Data (ECCAD) system (https://eccad.aeris-data.fr/, last access June 2021). For review purposes, ECCAD has set up an anonymous repository where a subset of the CAMS-GLOB-SOIL v2.2 data can be accessed directly (https://eccad.aeris-data.fr/essd-surf-emis-cams-soil/, Last access July 2021, Simpson 2021b).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全球土壤NO排放大气化学传输模型:CAMS-GLOB-SOIL v2.2
摘要我们提出了一个全球土壤NO排放数据集,包括网格化的月度数据和相应的3小时权重因子,适用于大气化学建模。全球数据以0.5°× 0.5°水平分辨率提供,每月时间分辨率为2000-2018年。排放以总价值的形式提供,同时还提供了来自背景生物群落值的土壤NO排放的单独数据,以及由肥料/粪肥、脉冲效应和大气沉积引起的土壤NO排放的数据,以便用户可以根据需要包括、排除或修改每个组成部分。本文介绍了排放算法及其数据来源,对其他清单中土壤NO排放的可用性(以及如何避免重复计算)进行了一些评论,最后给出了一些初步的建模结果以及与观测数据的比较。该数据集是作为哥白尼大气监测服务(CAMS)的一部分构建的,数据集称为CAMS- glob - soil v2.2。这些数据可通过哥白尼大气数据存储(ADS)系统(https://doi.org/10.24380/kz2r-fe18,最后一次访问于2021年6月,Simpson 2021a)或通过大气化合物排放和辅助数据汇编(ECCAD)系统(https://eccad.aeris-data.fr/,最后一次访问于2021年6月)获得。为了审查目的,ECCAD已经建立了一个匿名存储库,其中CAMS-GLOB-SOIL v2.2数据的一个子集可以直接访问(https://eccad.aeris-data.fr/essd-surf-emis-cams-soil/, Last access July 2021, Simpson 2021b)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New SMOS SSS maps in the framework of the Earth Observation data For Science and Innovation in the Black Sea LGHAP: a Long-term Gap-free High-resolution Air Pollutants concentration dataset derived via tensor flow based multimodal data fusion Pre- and post-production processes along supply chains increasingly dominate GHG emissions from agri-food systems globally and in most countries Last Interglacial sea-level data points from Northwest Europe A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1