Ontology-based Fuzzy Inference Agent for Diabetes Classification

Mei-Hui Wang, Chang-Shing Lee, Huan-Chung Li, Wei-Min Ko
{"title":"Ontology-based Fuzzy Inference Agent for Diabetes Classification","authors":"Mei-Hui Wang, Chang-Shing Lee, Huan-Chung Li, Wei-Min Ko","doi":"10.1109/NAFIPS.2007.383815","DOIUrl":null,"url":null,"abstract":"Diabetes is a chronic illness that requires continuing medical care and patient self-management to prevent acute complications and to reduce the risk of long-term complications. This paper presents an ontology-based fuzzy inference agent, including a fuzzy inference engine, and a fuzzy rule base, for diabetes classification. The diabetes disease dataset used in our study is retrieved from the UCI Machine Learning Database. The experimental results indicate that the proposed approach can work effectively for classifying the diabetes.","PeriodicalId":292853,"journal":{"name":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"220 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2007.383815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Diabetes is a chronic illness that requires continuing medical care and patient self-management to prevent acute complications and to reduce the risk of long-term complications. This paper presents an ontology-based fuzzy inference agent, including a fuzzy inference engine, and a fuzzy rule base, for diabetes classification. The diabetes disease dataset used in our study is retrieved from the UCI Machine Learning Database. The experimental results indicate that the proposed approach can work effectively for classifying the diabetes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于本体的糖尿病分类模糊推理代理
糖尿病是一种慢性疾病,需要持续的医疗护理和患者自我管理,以防止急性并发症和减少长期并发症的风险。提出了一种基于本体的糖尿病分类模糊推理代理,包括模糊推理引擎和模糊规则库。我们研究中使用的糖尿病疾病数据集来自UCI机器学习数据库。实验结果表明,该方法可以有效地对糖尿病进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neighbourhood Sets based on Web Usage Mining Design an Intelligent Neural-Fuzzy Controller for Hybrid Motorcycle Fuzzy ROI Based 2-D/3-D Registration for Kinetic Analysis after Anterior Cruciate Ligament Reconstruction About the Division Operator in a Possibilistic Database Framework A Fast Structural Optimization Technique for IDS Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1