{"title":"Meta-Labeling: Theory and Framework","authors":"J. Joubert","doi":"10.3905/jfds.2022.1.098","DOIUrl":null,"url":null,"abstract":"Meta-labeling is a machine learning (ML) layer that sits on top of a base primary strategy to help size positions, filter out false-positive signals, and improve metrics such as the Sharpe ratio and maximum drawdown. This article consolidates the knowledge of several publications into a single work, providing practitioners with a clear framework to support the application of meta-labeling to investment strategies. The relationships between binary classification metrics and strategy performance are explained, alongside answers to many frequently asked questions regarding the technique. The author also deconstructs meta-labeling into three components, using a controlled experiment to show how each component helps to improve strategy metrics and what types of features should be considered in the model specification phase.","PeriodicalId":199045,"journal":{"name":"The Journal of Financial Data Science","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Financial Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/jfds.2022.1.098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Meta-labeling is a machine learning (ML) layer that sits on top of a base primary strategy to help size positions, filter out false-positive signals, and improve metrics such as the Sharpe ratio and maximum drawdown. This article consolidates the knowledge of several publications into a single work, providing practitioners with a clear framework to support the application of meta-labeling to investment strategies. The relationships between binary classification metrics and strategy performance are explained, alongside answers to many frequently asked questions regarding the technique. The author also deconstructs meta-labeling into three components, using a controlled experiment to show how each component helps to improve strategy metrics and what types of features should be considered in the model specification phase.