Incremental Mosaicking of Images from Autonomous, Small-Scale UAVs

S. Yahyanejad, D. Wischounig-Strucl, M. Quaritsch, B. Rinner
{"title":"Incremental Mosaicking of Images from Autonomous, Small-Scale UAVs","authors":"S. Yahyanejad, D. Wischounig-Strucl, M. Quaritsch, B. Rinner","doi":"10.1109/AVSS.2010.14","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) have been recently deployedin various civilian applications such as environmentalmonitoring, aerial imaging or surveillance. Small-scaleUAVs are of special interest for first responders since theycan rather easily provide bird’s eye view images of disasterareas. In this paper we present a hybrid approach to mosaickan overview image of the area of interest given a setof individual images captured by UAVs flying at low altitude.Our approach combines metadata-based and imagebasedstitching methods in order to overcome the challengesof low-altitude, small-scale UAV deployment such as nonnadirview, inaccurate sensor data, non-planar ground surfacesand limited computing and communication resources.For the generation of the overview image we preserve georeferencingas much as possible, since this is an importantrequirement for disaster management applications. Ourmosaicking method has been implemented on our UAV systemand evaluated based on a quality metric.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

Unmanned aerial vehicles (UAVs) have been recently deployedin various civilian applications such as environmentalmonitoring, aerial imaging or surveillance. Small-scaleUAVs are of special interest for first responders since theycan rather easily provide bird’s eye view images of disasterareas. In this paper we present a hybrid approach to mosaickan overview image of the area of interest given a setof individual images captured by UAVs flying at low altitude.Our approach combines metadata-based and imagebasedstitching methods in order to overcome the challengesof low-altitude, small-scale UAV deployment such as nonnadirview, inaccurate sensor data, non-planar ground surfacesand limited computing and communication resources.For the generation of the overview image we preserve georeferencingas much as possible, since this is an importantrequirement for disaster management applications. Ourmosaicking method has been implemented on our UAV systemand evaluated based on a quality metric.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从自主,小型无人机图像的增量镶嵌
无人驾驶飞行器(uav)最近被部署在各种民用应用中,如环境监测、航空成像或监视。小型无人机对急救人员特别有兴趣,因为它们可以很容易地提供灾区的鸟瞰图。在本文中,我们提出了一种混合的方法,以获得一组由低空飞行的无人机捕获的单个图像的兴趣区域的马赛克概述图像。我们的方法结合了基于元数据和基于图像的拼接方法,以克服低空、小型无人机部署的挑战,如非导航视图、不准确的传感器数据、非平面地面以及有限的计算和通信资源。对于总览图像的生成,我们尽可能地保留地理参考,因为这是灾害管理应用程序的重要需求。我们的拼接方法已经在我们的无人机系统上实现,并基于质量度量进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Background Modeling: An Edge Segment Based Moving Object Detection Approach Who, what, when, where, why and how in video analysis: an application centric view Trajectory Based Activity Discovery Local Abnormality Detection in Video Using Subspace Learning Functionality Delegation in Distributed Surveillance Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1