Enhancing Heart Disease Prediction Using Ensemble Techniques

Wasilah Sada, Celinus Kiyea
{"title":"Enhancing Heart Disease Prediction Using Ensemble Techniques","authors":"Wasilah Sada, Celinus Kiyea","doi":"10.56471/slujst.v4i.277","DOIUrl":null,"url":null,"abstract":"Background: Cardiovascular diseases are recognized generally to be among the number one illnesscausing death across the globe. Predicting heart disease using a computer-aided technique makes it easier for medical practitioners to diagnose and thereby savinglives andreducingcosts. Feature selection has become an essential component for developing Machinelearning models. It chooses the most relevant features from the available dataset,thereby shortening the training period, making the model easier to train, improving generalization and decreasing overfitting without necessarily compromising the system’s accuracy. Aim:The purpose of this work is to design and build an optimal model forthe prediction of heart diseases,especially at an early stage by considering certain features that are most relevant forthe prediction without compromising the system’s accuracy. Method: The Cleveland UCI dataset with 303 instances wereused in trainingthe model and the findings showthat selectKBest is an effective tool in improving the prediction of heart diseases. The performance metrics Accuracy, Sensitivity, Precision were measured.Results: the study found that when hybridizing k-Nearest Neighbor Bagging, Decision TreeBagging, Gradient Boosting generated the highest accuracy of 90%, 85% and 88% respectively.","PeriodicalId":299818,"journal":{"name":"SLU Journal of Science and Technology","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLU Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56471/slujst.v4i.277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cardiovascular diseases are recognized generally to be among the number one illnesscausing death across the globe. Predicting heart disease using a computer-aided technique makes it easier for medical practitioners to diagnose and thereby savinglives andreducingcosts. Feature selection has become an essential component for developing Machinelearning models. It chooses the most relevant features from the available dataset,thereby shortening the training period, making the model easier to train, improving generalization and decreasing overfitting without necessarily compromising the system’s accuracy. Aim:The purpose of this work is to design and build an optimal model forthe prediction of heart diseases,especially at an early stage by considering certain features that are most relevant forthe prediction without compromising the system’s accuracy. Method: The Cleveland UCI dataset with 303 instances wereused in trainingthe model and the findings showthat selectKBest is an effective tool in improving the prediction of heart diseases. The performance metrics Accuracy, Sensitivity, Precision were measured.Results: the study found that when hybridizing k-Nearest Neighbor Bagging, Decision TreeBagging, Gradient Boosting generated the highest accuracy of 90%, 85% and 88% respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用集成技术增强心脏病预测
背景:心血管疾病是全球公认的头号致死疾病之一。使用计算机辅助技术预测心脏病使医生更容易诊断,从而挽救生命并降低成本。特征选择已成为开发机器学习模型的重要组成部分。它从可用数据集中选择最相关的特征,从而缩短训练周期,使模型更容易训练,提高泛化和减少过拟合,而不一定影响系统的准确性。目的:本工作的目的是在不影响系统准确性的情况下,通过考虑与预测最相关的某些特征,设计和构建心脏病预测的最佳模型,特别是在早期阶段。方法:使用Cleveland UCI数据集的303个实例对模型进行训练,结果表明selectKBest是提高心脏病预测的有效工具。测量了准确度、灵敏度、精密度等性能指标。结果:研究发现,k-Nearest Neighbor Bagging、Decision TreeBagging和Gradient Boosting杂交时,准确率最高,分别为90%、85%和88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling of Post-COVID-19 Food Production Index in Nigeria using Box-Jenkins Methodology Sum-Rate Systematic Intercell Interference Coordination Techniques for5GHeterogeneous Networks Towards the Choice of Better Social Media Platform for Knowledge Delivery: Exploratory Study in University of Ilorin Schemes for Extending the Network Lifetime of Wireless Rechargeable Sensor Networks Design and Analysis of 1x4 and 1x8 Circular Patch Microstrip Antenna Array for IWSN Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1