WeChat traffic classification using machine learning algorithms and comparative analysis of datasets

M. Shafiq, Xiangzhan Yu, A. Laghari
{"title":"WeChat traffic classification using machine learning algorithms and comparative analysis of datasets","authors":"M. Shafiq, Xiangzhan Yu, A. Laghari","doi":"10.1504/IJICS.2018.10012574","DOIUrl":null,"url":null,"abstract":"In this research paper, we present the first classification study to classify WeChat application service flow traffic (text messages, picture messages, audio call and video call traffic) classification and secondly to find out the effectiveness of big dataset and small dataset as well as to find out effective machine learning classifiers. We firstly capture WeChat traffic and then extract 44 features then we combine capture traffic to make full instance of dataset. Then we make reduce instances of dataset from the full instance of dataset to show the effectiveness of large dataset and small dataset. Then we execute well known machine learning classifiers. Using statistical test, we use Wilcoxon and Friedman statistical test for the datasets and ML classifiers to find more deeply its effectiveness. Experimental results show that reduce instance dataset show high accuracy result compared to full instance and C4.5 classifier perform effectively as compared to other classifiers.","PeriodicalId":164016,"journal":{"name":"Int. J. Inf. Comput. Secur.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Comput. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJICS.2018.10012574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this research paper, we present the first classification study to classify WeChat application service flow traffic (text messages, picture messages, audio call and video call traffic) classification and secondly to find out the effectiveness of big dataset and small dataset as well as to find out effective machine learning classifiers. We firstly capture WeChat traffic and then extract 44 features then we combine capture traffic to make full instance of dataset. Then we make reduce instances of dataset from the full instance of dataset to show the effectiveness of large dataset and small dataset. Then we execute well known machine learning classifiers. Using statistical test, we use Wilcoxon and Friedman statistical test for the datasets and ML classifiers to find more deeply its effectiveness. Experimental results show that reduce instance dataset show high accuracy result compared to full instance and C4.5 classifier perform effectively as compared to other classifiers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微信流量分类采用机器学习算法和数据集对比分析
在本文中,我们首先进行了分类研究,对微信应用服务流量(短信、图片消息、音频通话和视频通话流量)进行分类,然后进行了大数据集和小数据集的有效性研究,找到了有效的机器学习分类器。我们首先捕获微信流量,然后提取44个特征,然后将捕获的流量组合成数据集的完整实例。然后,我们从数据集的完整实例中进行数据集的约简,以显示大数据集和小数据集的有效性。然后我们执行众所周知的机器学习分类器。使用统计检验,我们对数据集和ML分类器使用Wilcoxon和Friedman统计检验,以更深入地发现其有效性。实验结果表明,与全实例相比,减少实例数据集具有较高的准确率,C4.5分类器与其他分类器相比具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vulnerability discovery modelling: a general framework Modelling and visualising SSH brute force attack behaviours through a hybrid learning framework Empirical risk assessment of attack graphs using time to compromise framework Fault-based testing for discovering SQL injection vulnerabilities in web applications Leveraging Intel SGX to enable trusted and privacy preserving membership service in distributed ledgers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1