Practical Online Active Learning for Classification

C. Monteleoni, Matti Kääriäinen
{"title":"Practical Online Active Learning for Classification","authors":"C. Monteleoni, Matti Kääriäinen","doi":"10.1109/CVPR.2007.383437","DOIUrl":null,"url":null,"abstract":"We compare the practical performance of several recently proposed algorithms for active learning in the online classification setting. We consider two active learning algorithms (and their combined variants) that are strongly online, in that they access the data sequentially and do not store any previously labeled examples, and for which formal guarantees have recently been proven under various assumptions. We motivate an optical character recognition (OCR) application that we argue to be appropriately served by online active learning. We compare the practical efficacy, for this application, of the algorithm variants, and show significant reductions in label-complexity over random sampling.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

We compare the practical performance of several recently proposed algorithms for active learning in the online classification setting. We consider two active learning algorithms (and their combined variants) that are strongly online, in that they access the data sequentially and do not store any previously labeled examples, and for which formal guarantees have recently been proven under various assumptions. We motivate an optical character recognition (OCR) application that we argue to be appropriately served by online active learning. We compare the practical efficacy, for this application, of the algorithm variants, and show significant reductions in label-complexity over random sampling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实用的在线分类主动学习
我们比较了最近提出的几种在线分类设置中主动学习算法的实际性能。我们考虑两种主动学习算法(及其组合变体),它们是强在线的,因为它们顺序访问数据并且不存储任何先前标记的示例,并且最近在各种假设下证明了形式保证。我们提出了一种光学字符识别(OCR)应用程序,我们认为在线主动学习可以适当地为其服务。我们比较了算法变体在此应用中的实际效果,并显示了与随机抽样相比标签复杂性的显着降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Region and Edge Cues for Image Segmentation in a Probabilistic Gaussian Mixture Framework Fast Human Pose Estimation using Appearance and Motion via Multi-Dimensional Boosting Regression Enhanced Level Building Algorithm for the Movement Epenthesis Problem in Sign Language Recognition Change Detection in a 3-d World Layered Graph Match with Graph Editing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1