On road vehicle make and model recognition via sparse feature coding

A. Nazemi, M. Shafiee, Z. Azimifar
{"title":"On road vehicle make and model recognition via sparse feature coding","authors":"A. Nazemi, M. Shafiee, Z. Azimifar","doi":"10.1109/IRANIANMVIP.2013.6780025","DOIUrl":null,"url":null,"abstract":"Automatic vehicle Make and Model Recognition (MMR) system offers a competent way to vehicle classification and recognition systems. This paper proposes a real time while robust vehicle make and model recognition system extracting the vehicle sub-image from the background and studies some sparse feature coding methods such as Orthogonal Matching Pursuit (OMP), some variation of Sparse Coding (SC) methods and compares them to choose the best one. Our method employs the sparse feature coding methods on dense Scale-Invariant Feature Transform (SIFT) features and Support Vector Machine (SVM) for classification. The proposed system is examined by an Iranian on road vehicles dataset, which its samples are in different point of views, various weather conditions and illuminations.","PeriodicalId":297204,"journal":{"name":"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANMVIP.2013.6780025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Automatic vehicle Make and Model Recognition (MMR) system offers a competent way to vehicle classification and recognition systems. This paper proposes a real time while robust vehicle make and model recognition system extracting the vehicle sub-image from the background and studies some sparse feature coding methods such as Orthogonal Matching Pursuit (OMP), some variation of Sparse Coding (SC) methods and compares them to choose the best one. Our method employs the sparse feature coding methods on dense Scale-Invariant Feature Transform (SIFT) features and Support Vector Machine (SVM) for classification. The proposed system is examined by an Iranian on road vehicles dataset, which its samples are in different point of views, various weather conditions and illuminations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏特征编码的道路车辆型号识别
自动车型识别(MMR)系统为车辆分类识别提供了一种有效的方法。本文提出了一种从背景中提取车辆子图像的实时鲁棒的车型识别系统,研究了稀疏特征编码方法,如正交匹配追踪(OMP)方法、稀疏编码方法的几种变体(SC)方法,并对其进行了比较选择。该方法采用稀疏特征编码方法对密集尺度不变特征变换(SIFT)特征和支持向量机(SVM)进行分类。该系统由伊朗的道路车辆数据集进行了测试,其样本处于不同的角度、不同的天气条件和照明下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated lung CT image segmentation using kernel mean shift analysis A simple and efficient approach for 3D model decomposition MRI image reconstruction via new K-space sampling scheme based on separable transform Fusion of SPECT and MRI images using back and fore ground information Real time occlusion handling using Kalman Filter and mean-shift
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1