{"title":"Multiple parameter estimation with quantized channel output","authors":"A. Mezghani, F. Antreich, J. Nossek","doi":"10.1109/WSA.2010.5456454","DOIUrl":null,"url":null,"abstract":"We present a general problem formulation for optimal parameter estimation based on quantized observations, with application to antenna array communication and processing (channel estimation, time-of-arrival (TOA) and direction-of-arrival (DOA) estimation). The work is of interest in the case when low resolution A/D-converters (ADCs) have to be used to enable higher sampling rate and to simplify the hardware. An Expectation-Maximization (EM) based algorithm is proposed for solving this problem in a general setting. Besides, we derive the Cramér-Rao Bound (CRB) and discuss the effects of quantization and the optimal choice of the ADC characteristic. Numerical and analytical analysis reveals that reliable estimation may still be possible even when the quantization is very coarse.","PeriodicalId":311394,"journal":{"name":"2010 International ITG Workshop on Smart Antennas (WSA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International ITG Workshop on Smart Antennas (WSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSA.2010.5456454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103
Abstract
We present a general problem formulation for optimal parameter estimation based on quantized observations, with application to antenna array communication and processing (channel estimation, time-of-arrival (TOA) and direction-of-arrival (DOA) estimation). The work is of interest in the case when low resolution A/D-converters (ADCs) have to be used to enable higher sampling rate and to simplify the hardware. An Expectation-Maximization (EM) based algorithm is proposed for solving this problem in a general setting. Besides, we derive the Cramér-Rao Bound (CRB) and discuss the effects of quantization and the optimal choice of the ADC characteristic. Numerical and analytical analysis reveals that reliable estimation may still be possible even when the quantization is very coarse.