Supervised and Unsupervised Machine Learning for Cancer Classification: Recent Development

Aina Umairah Mazlan, N. A. Sahabudin, Muhammad Akmal bin Remli, N. N. Ismail, M. S. Mohamad, Nor Bakiah Abd Warif
{"title":"Supervised and Unsupervised Machine Learning for Cancer Classification: Recent Development","authors":"Aina Umairah Mazlan, N. A. Sahabudin, Muhammad Akmal bin Remli, N. N. Ismail, M. S. Mohamad, Nor Bakiah Abd Warif","doi":"10.1109/I2CACIS52118.2021.9495888","DOIUrl":null,"url":null,"abstract":"This is models with the ability to detect and classify cancer is important in the industrial of healthcare. The most difficult aspect for such model is the classification of cancer, which can be addressed using machine learning methods. The methods are used to improve classification accuracy between system output and test data. The classification process becomes more difficult due to vast data information. This paper presents an overview on current development of cancer classification techniques using machine learning methods, which have received increasing attention within the area of healthcare. This review will mainly focus on the development of machine learning methods for classification of cancer diseases. Recently, there are various researchers proposed different kinds of methods for cancer classification. The results show that the successful of cancer classification is dependent on the machine learning models. Besides, various types of healthcare data used in the experiments would also be discussed in this paper. The development of many optimization methods for cancer classification has brought a lot of improvement in the healthcare field. There is demand for further improvements in optimization methods to develop better machine learning models for cancer classification.","PeriodicalId":210770,"journal":{"name":"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)","volume":"489 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CACIS52118.2021.9495888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This is models with the ability to detect and classify cancer is important in the industrial of healthcare. The most difficult aspect for such model is the classification of cancer, which can be addressed using machine learning methods. The methods are used to improve classification accuracy between system output and test data. The classification process becomes more difficult due to vast data information. This paper presents an overview on current development of cancer classification techniques using machine learning methods, which have received increasing attention within the area of healthcare. This review will mainly focus on the development of machine learning methods for classification of cancer diseases. Recently, there are various researchers proposed different kinds of methods for cancer classification. The results show that the successful of cancer classification is dependent on the machine learning models. Besides, various types of healthcare data used in the experiments would also be discussed in this paper. The development of many optimization methods for cancer classification has brought a lot of improvement in the healthcare field. There is demand for further improvements in optimization methods to develop better machine learning models for cancer classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
癌症分类的监督和非监督机器学习:最新进展
这种具有检测和分类癌症能力的模型在医疗保健行业非常重要。这种模型最困难的方面是癌症的分类,这可以使用机器学习方法来解决。该方法用于提高系统输出和测试数据之间的分类精度。由于海量的数据信息,分类过程变得更加困难。本文概述了目前使用机器学习方法的癌症分类技术的发展,这些技术在医疗保健领域受到越来越多的关注。本文将主要介绍机器学习方法在癌症疾病分类方面的发展。近年来,不同的研究者提出了不同的癌症分类方法。结果表明,癌症分类的成功依赖于机器学习模型。此外,本文还将讨论实验中使用的各种医疗保健数据。许多癌症分类优化方法的发展给医疗保健领域带来了很大的改善。需要进一步改进优化方法,以开发更好的癌症分类机器学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-Linear Analytical Mathematical Modelling of a Hybrid Fixed-Wing Unmanned Aerial Vehicle in Pusher Configuration Efficacy of Heterogeneous Ensemble Assisted Machine Learning Model for Binary and Multi-Class Network Intrusion Detection Arrhythmia Detection using Electrocardiogram and Phonocardiogram Pattern using Integrated Signal Processing Algorithms with the Aid of Convolutional Neural Networks Reduced Computational Burden Model Predictive Current Control of Asymmetric Stacked Multi-Level Inverter Based STATCOM Analysis of Kaffir Lime Oil Chemical Compounds by Gas Chromatography-Mass Spectrometry (GC-MS) and Z-Score Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1