{"title":"Recursive least-squares doubly-selective MIMO channel estimation using exponential basis models","authors":"Hyosung Kim, Jitendra Tugnait","doi":"10.1109/CISS.2009.5054772","DOIUrl":null,"url":null,"abstract":"An adaptive MIMO channel estimation scheme, exploiting the oversampled complex exponential basis expansion model (CE-BEM), is presented for doubly-selective fading channels where we track the BEM coefficients. The time-varying nature of the channel is well captured by the CE-BEM while the time-variations of the (unknown) BEM coefficients are likely much slower than that of the channel. We apply the exponentially-weighted and sliding-window recursive least-squares (RLS) algorithms to track the BEM coefficients subblock-by-subblock, using time-multiplexed periodically transmitted training symbols. Simulation examples demonstrate its superior performance over the conventional block-wise channel estimator.","PeriodicalId":433796,"journal":{"name":"2009 43rd Annual Conference on Information Sciences and Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 43rd Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2009.5054772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An adaptive MIMO channel estimation scheme, exploiting the oversampled complex exponential basis expansion model (CE-BEM), is presented for doubly-selective fading channels where we track the BEM coefficients. The time-varying nature of the channel is well captured by the CE-BEM while the time-variations of the (unknown) BEM coefficients are likely much slower than that of the channel. We apply the exponentially-weighted and sliding-window recursive least-squares (RLS) algorithms to track the BEM coefficients subblock-by-subblock, using time-multiplexed periodically transmitted training symbols. Simulation examples demonstrate its superior performance over the conventional block-wise channel estimator.