Regional PM2.5 Estimation for Southern Ontario through Geographically Weighted Regression

K. Huang
{"title":"Regional PM2.5 Estimation for Southern Ontario through Geographically Weighted Regression","authors":"K. Huang","doi":"10.3808/jeil.202300100","DOIUrl":null,"url":null,"abstract":"In this study, a geographically weighted regression (GWR) approach was adopted to forecast regional concentration of particulate matter 2.5 (PM2.5) for the southern Ontario based on both in situ meteorological measurement and Satellite retrievals of aerosol optical depth (AOD). The correlation between monitored concentration of PM2.5 and Satellite-retrieved AOD would be quantified. The ground-level PM2.5 for South Ontario area was then predicted using GWR with AOD and meteorological variables considered as inputs. The results indicated that performance of GWR was slightly better than the ordinary least squares (OLS) model, indicating spatial variations between independent and dependent variables. Consequently, the GWR model can help us to predict the PM2.5 concentration in terms of time or region with satellite data, and also help improve satellite data inversion.","PeriodicalId":143718,"journal":{"name":"Journal of Environmental Informatics Letters","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Informatics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3808/jeil.202300100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a geographically weighted regression (GWR) approach was adopted to forecast regional concentration of particulate matter 2.5 (PM2.5) for the southern Ontario based on both in situ meteorological measurement and Satellite retrievals of aerosol optical depth (AOD). The correlation between monitored concentration of PM2.5 and Satellite-retrieved AOD would be quantified. The ground-level PM2.5 for South Ontario area was then predicted using GWR with AOD and meteorological variables considered as inputs. The results indicated that performance of GWR was slightly better than the ordinary least squares (OLS) model, indicating spatial variations between independent and dependent variables. Consequently, the GWR model can help us to predict the PM2.5 concentration in terms of time or region with satellite data, and also help improve satellite data inversion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于地理加权回归的安大略省南部区域PM2.5估算
本研究采用地理加权回归(GWR)方法,在现场气象测量和卫星气溶胶光学深度(AOD)反演的基础上,对安大略省南部地区PM2.5的区域浓度进行了预测。PM2.5监测浓度与卫星反演AOD之间的相关性将被量化。利用GWR,以AOD和气象变量作为输入,预测了南安大略地区的地面PM2.5。结果表明,GWR模型的表现略好于普通最小二乘(OLS)模型,表明自变量与因变量之间存在空间差异。因此,GWR模型可以帮助我们利用卫星数据预测PM2.5浓度的时间或区域,也有助于改进卫星数据的反演。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extending Simulation Decomposition Analysis into Systemic Risk Planning for Domino-Like Cascading Effects in Environmental Systems Tracing Energy Conservation and Emission Reduction in China’s Transportation Sector Extreme Summer Precipitation Events in China and Their Changes during 1982 ~ 2019 Characteristics of Seasonal Frozen Soil in Hetao Irrigation District under Climate Change Distribution Characteristics of Soil Moisture in the Three Rivers Headwaters Region, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1