{"title":"McPAT-Calib: A Microarchitecture Power Modeling Framework for Modern CPUs","authors":"Jianwang Zhai, Chen Bai, Binwu Zhu, Yici Cai, Qiang Zhou, Bei Yu","doi":"10.1109/ICCAD51958.2021.9643508","DOIUrl":null,"url":null,"abstract":"Energy efficiency has become the core issue of modern CPUs, and it is difficult for existing power models to balance speed, generality, and accuracy. This paper introduces McPAT-Calib, a microarchitecture power modeling framework, which combines McPAT with machine learning (ML) calibration methods. McPAT-Calib can quickly and accurately estimate the power of different benchmarks running on different CPU configurations, and provide an effective evaluation tool for the design of modern CPUs. First, McPAT-7nm is introduced to support the analytical power modeling for the 7nm technology node. Then, a wide range of modeling features are identified, and automatic feature selection and advanced regression methods are used to calibrate the McPAT-7nm modeling results, which greatly improves the generality and accuracy. Moreover, a sampling algorithm based on active learning (AL) is leveraged to effectively reduce the labeling cost. We use up to 15 configurations of 7nm RISC-V Berkeley Out-of-Order Machine (BOOM) along with 80 benchmarks to extensively evaluate the proposed framework. Compared with state-of-the-art microarchitecture power models, McPAT-Calib can reduce the mean absolute percentage error (MAPE) of shuffle-split cross-validation by 5.95%. More importantly, the MAPE is reduced by 6.14% and 3.64% for the evaluations of unknown CPU configurations and benchmarks, respectively. The AL sampling algorithm can reduce the demand of labeled samples by 50 %, while the accuracy loss is only 0.44 %.","PeriodicalId":370791,"journal":{"name":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD51958.2021.9643508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Energy efficiency has become the core issue of modern CPUs, and it is difficult for existing power models to balance speed, generality, and accuracy. This paper introduces McPAT-Calib, a microarchitecture power modeling framework, which combines McPAT with machine learning (ML) calibration methods. McPAT-Calib can quickly and accurately estimate the power of different benchmarks running on different CPU configurations, and provide an effective evaluation tool for the design of modern CPUs. First, McPAT-7nm is introduced to support the analytical power modeling for the 7nm technology node. Then, a wide range of modeling features are identified, and automatic feature selection and advanced regression methods are used to calibrate the McPAT-7nm modeling results, which greatly improves the generality and accuracy. Moreover, a sampling algorithm based on active learning (AL) is leveraged to effectively reduce the labeling cost. We use up to 15 configurations of 7nm RISC-V Berkeley Out-of-Order Machine (BOOM) along with 80 benchmarks to extensively evaluate the proposed framework. Compared with state-of-the-art microarchitecture power models, McPAT-Calib can reduce the mean absolute percentage error (MAPE) of shuffle-split cross-validation by 5.95%. More importantly, the MAPE is reduced by 6.14% and 3.64% for the evaluations of unknown CPU configurations and benchmarks, respectively. The AL sampling algorithm can reduce the demand of labeled samples by 50 %, while the accuracy loss is only 0.44 %.