DOA estimation using blind separation of sources

M. Hirari, M. Hayakawa
{"title":"DOA estimation using blind separation of sources","authors":"M. Hirari, M. Hayakawa","doi":"10.1109/HOST.1997.613537","DOIUrl":null,"url":null,"abstract":"We propose a new approach for the estimation of DOA for polarized EM waves using blind separation of sources. In this approach we use a vector-sensor, a sensor whose output is a complete set of the EM field components of the irradiating wave and we reconstruct the waveforms of all the original signals; that is, all the EM components of the source's field. The blind separation of sources is made iteratively using a recurrent Hopfield-like single layer neural network. The simulation results for two sources have been investigated. We have considered coherent and incoherent sources, and also the case of varying DOA's vis-a-vis to the sensor and a varying polarization.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We propose a new approach for the estimation of DOA for polarized EM waves using blind separation of sources. In this approach we use a vector-sensor, a sensor whose output is a complete set of the EM field components of the irradiating wave and we reconstruct the waveforms of all the original signals; that is, all the EM components of the source's field. The blind separation of sources is made iteratively using a recurrent Hopfield-like single layer neural network. The simulation results for two sources have been investigated. We have considered coherent and incoherent sources, and also the case of varying DOA's vis-a-vis to the sensor and a varying polarization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于盲分离源的DOA估计
提出了一种利用源盲分离估计极化电磁波DOA的新方法。在这种方法中,我们使用矢量传感器,其输出是辐射波的电磁场分量的完整集合,我们重建所有原始信号的波形;即源场的所有EM分量。采用递归类hopfield单层神经网络进行源的盲分离。对两种源的模拟结果进行了研究。我们考虑了相干源和非相干源,以及相对于传感器的不同DOA和不同偏振的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Narrow band source separation in wide band context applications to array signal processing Higher-order statistics for tissue characterization from ultrasound images An iterative mixed norm image restoration algorithm Comparison between asymmetric generalized Gaussian (AGG) and symmetric-/spl alpha/-stable (S/spl alpha/S) noise models for signal estimation in non Gaussian environments Linear algebraic approaches for (almost) periodic moving average system identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1