{"title":"Gaussian Multiple and Random Access in the Finite Blocklength Regime","authors":"Recep Can Yavas, V. Kostina, M. Effros","doi":"10.1109/ITA50056.2020.9244955","DOIUrl":null,"url":null,"abstract":"This paper presents finite-blocklength achievability bounds for the Gaussian multiple access channel (MAC) and random access channel (RAC) under average-error and maximal-power constraints. Using random codewords uniformly distributed on a sphere and a maximum likelihood decoder, the derived MAC bound on each transmitter's rate matches the MolavianJazi-Laneman bound (2015) in its first- and second- order terms, improving the remaining terms to $\\frac{1}{2}\\frac{{\\log n}}{n} + O\\left( {\\frac{1}{n}} \\right)$ bits per channel use. The result then extends to a RAC model in which neither the encoders nor the decoder knows which of K possible transmitters are active. In the proposed rateless coding strategy, decoding occurs at a time nt that depends on the decoder's estimate t of the number of active transmitters k. Single-bit feedback from the decoder to all encoders at each potential decoding time ni, i ≤ t, informs the encoders when to stop transmitting. For this RAC model, the proposed code achieves the same first-, second-, and third-order performance as the best known result for the Gaussian MAC in operation.","PeriodicalId":137257,"journal":{"name":"2020 Information Theory and Applications Workshop (ITA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA50056.2020.9244955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper presents finite-blocklength achievability bounds for the Gaussian multiple access channel (MAC) and random access channel (RAC) under average-error and maximal-power constraints. Using random codewords uniformly distributed on a sphere and a maximum likelihood decoder, the derived MAC bound on each transmitter's rate matches the MolavianJazi-Laneman bound (2015) in its first- and second- order terms, improving the remaining terms to $\frac{1}{2}\frac{{\log n}}{n} + O\left( {\frac{1}{n}} \right)$ bits per channel use. The result then extends to a RAC model in which neither the encoders nor the decoder knows which of K possible transmitters are active. In the proposed rateless coding strategy, decoding occurs at a time nt that depends on the decoder's estimate t of the number of active transmitters k. Single-bit feedback from the decoder to all encoders at each potential decoding time ni, i ≤ t, informs the encoders when to stop transmitting. For this RAC model, the proposed code achieves the same first-, second-, and third-order performance as the best known result for the Gaussian MAC in operation.