Panagiotis Mpakos, D. Galanopoulos, Petros Anastasiadis, Nikela Papadopoulou, N. Koziris, G. Goumas
{"title":"Feature-based SpMV Performance Analysis on Contemporary Devices","authors":"Panagiotis Mpakos, D. Galanopoulos, Petros Anastasiadis, Nikela Papadopoulou, N. Koziris, G. Goumas","doi":"10.1109/IPDPS54959.2023.00072","DOIUrl":null,"url":null,"abstract":"The SpMV kernel is characterized by high performance variation per input matrix and computing platform. While GPUs were considered State-of-the-Art for SpMV, with the emergence of advanced multicore CPUs and low-power FPGA accelerators, we need to revisit its performance and energy efficiency. This paper provides a high-level SpMV performance analysis based on structural features of matrices related to common bottlenecks of memory-bandwidth intensity, low ILP, load imbalance and memory latency overheads. Towards this, we create a wide artificial matrix dataset that spans these features and study the performance of different storage formats in nine modern HPC platforms; five CPUs, three GPUs and an FPGA. After validating our proposed methodology using real-world matrices, we analyze our extensive experimental results and draw key insights on the competitiveness of different target architectures for SpMV and the impact of each feature/bottleneck on its performance.","PeriodicalId":343684,"journal":{"name":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS54959.2023.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The SpMV kernel is characterized by high performance variation per input matrix and computing platform. While GPUs were considered State-of-the-Art for SpMV, with the emergence of advanced multicore CPUs and low-power FPGA accelerators, we need to revisit its performance and energy efficiency. This paper provides a high-level SpMV performance analysis based on structural features of matrices related to common bottlenecks of memory-bandwidth intensity, low ILP, load imbalance and memory latency overheads. Towards this, we create a wide artificial matrix dataset that spans these features and study the performance of different storage formats in nine modern HPC platforms; five CPUs, three GPUs and an FPGA. After validating our proposed methodology using real-world matrices, we analyze our extensive experimental results and draw key insights on the competitiveness of different target architectures for SpMV and the impact of each feature/bottleneck on its performance.