FlowCon

Wenjia Zheng, Michael Tynes, Henry Gorelick, Ying Mao, Long Cheng, Yantian Hou
{"title":"FlowCon","authors":"Wenjia Zheng, Michael Tynes, Henry Gorelick, Ying Mao, Long Cheng, Yantian Hou","doi":"10.1145/3337821.3337868","DOIUrl":null,"url":null,"abstract":"An increasing number of companies are using data analytics to improve their products, services, and business processes. However, learning knowledge effectively from massive data sets always involves nontrivial computational resources. Most businesses thus choose to migrate their hardware needs to a remote cluster computing service (e.g., AWS) or to an in-house cluster facility which is often run at its resource capacity. In such scenarios, where jobs compete for available resources utilizing resources effectively to achieve high-performance data analytics becomes desirable. Although cluster resource management is a fruitful research area having made many advances (e.g., YARN, Kubernetes), few projects have investigated how further optimizations can be made specifically for training multiple machine learning (ML) / deep learning (DL) models. In this work, we introduce FlowCon, a system which is able to monitor loss functions of ML/DL jobs at runtime, and thus to make decisions on resource configuration elastically. We present a detailed design and implementation of FlowCon, and conduct intensive experiments over various DL models. Our experimental results show that FlowCon can strongly improve DL job completion time and resource utilization efficiency, compared to existing approaches. Specifically, FlowCon can reduce the completion time by up to 42.06% for a specific job without sacrificing the overall makespan, in the presence of various DL job workloads.","PeriodicalId":405273,"journal":{"name":"Proceedings of the 48th International Conference on Parallel Processing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 48th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3337821.3337868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

An increasing number of companies are using data analytics to improve their products, services, and business processes. However, learning knowledge effectively from massive data sets always involves nontrivial computational resources. Most businesses thus choose to migrate their hardware needs to a remote cluster computing service (e.g., AWS) or to an in-house cluster facility which is often run at its resource capacity. In such scenarios, where jobs compete for available resources utilizing resources effectively to achieve high-performance data analytics becomes desirable. Although cluster resource management is a fruitful research area having made many advances (e.g., YARN, Kubernetes), few projects have investigated how further optimizations can be made specifically for training multiple machine learning (ML) / deep learning (DL) models. In this work, we introduce FlowCon, a system which is able to monitor loss functions of ML/DL jobs at runtime, and thus to make decisions on resource configuration elastically. We present a detailed design and implementation of FlowCon, and conduct intensive experiments over various DL models. Our experimental results show that FlowCon can strongly improve DL job completion time and resource utilization efficiency, compared to existing approaches. Specifically, FlowCon can reduce the completion time by up to 42.06% for a specific job without sacrificing the overall makespan, in the presence of various DL job workloads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Express Link Placement for NoC-Based Many-Core Platforms Cartesian Collective Communication Artemis A Specialized Concurrent Queue for Scheduling Irregular Workloads on GPUs diBELLA: Distributed Long Read to Long Read Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1