Julius Bartaševičius, Pedro A. Fleig, Annina Metzner, M. Hornung
{"title":"Design and testing of an in-flight thrust measurement system for a pylon-mounted miniature jet engine","authors":"Julius Bartaševičius, Pedro A. Fleig, Annina Metzner, M. Hornung","doi":"10.2514/6.2022-1827","DOIUrl":null,"url":null,"abstract":"Optimization of aircraft’s performance often requires careful consideration of aerodynamic drag. However, direct measurement of drag of a flying vehicle is not feasible. Therefore, in order to measure the change in drag for different configurations of a flying aircraft, in-flight thrust measurement is necessary, which can consequently be used to derive drag. For this reason, the design of an in-flight thrust measurement system for a pylon-mounted jet engine is presented. The system is based on the trunnion thrust method. The design process is described, including a review of state of the art as well as measurement error consideration. Calibration methods are presented. During the calibration, the thrust root-mean-square error of 0.64 N was observed. The system was flight tested and proved to work reliably in real-life conditions. Finally, the flight test data was used to generate a thrust model based on engine parameters.","PeriodicalId":192386,"journal":{"name":"AIAA SCITECH 2022 Forum","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIAA SCITECH 2022 Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2022-1827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Optimization of aircraft’s performance often requires careful consideration of aerodynamic drag. However, direct measurement of drag of a flying vehicle is not feasible. Therefore, in order to measure the change in drag for different configurations of a flying aircraft, in-flight thrust measurement is necessary, which can consequently be used to derive drag. For this reason, the design of an in-flight thrust measurement system for a pylon-mounted jet engine is presented. The system is based on the trunnion thrust method. The design process is described, including a review of state of the art as well as measurement error consideration. Calibration methods are presented. During the calibration, the thrust root-mean-square error of 0.64 N was observed. The system was flight tested and proved to work reliably in real-life conditions. Finally, the flight test data was used to generate a thrust model based on engine parameters.