A unified stochastic model for detecting and tracking faces

Sachin Gangaputra, D. Geman
{"title":"A unified stochastic model for detecting and tracking faces","authors":"Sachin Gangaputra, D. Geman","doi":"10.1109/CRV.2005.12","DOIUrl":null,"url":null,"abstract":"We propose merging face detection and face tracking into a single probabilistic framework. The motivation stems from a broader project in algorithmic modeling, centered on the design and analysis of the online computational process in visual recognition. Detection is represented as a tree-structured graphical network in which likelihoods are assigned to each history or \"trace\" of processing, thereby introducing a new probabilistic component into coarse-to-fine search strategies. When embedded within a temporal Markov framework, the resulting tracking system yields encouraging results.","PeriodicalId":307318,"journal":{"name":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2005.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We propose merging face detection and face tracking into a single probabilistic framework. The motivation stems from a broader project in algorithmic modeling, centered on the design and analysis of the online computational process in visual recognition. Detection is represented as a tree-structured graphical network in which likelihoods are assigned to each history or "trace" of processing, thereby introducing a new probabilistic component into coarse-to-fine search strategies. When embedded within a temporal Markov framework, the resulting tracking system yields encouraging results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人脸检测与跟踪的统一随机模型
我们提出将人脸检测和人脸跟踪合并到一个概率框架中。动机源于一个更广泛的算法建模项目,集中在视觉识别在线计算过程的设计和分析上。检测被表示为一个树状结构的图形网络,其中概率被分配到每个历史或处理的“痕迹”,从而在粗到细的搜索策略中引入了一个新的概率成分。当嵌入到时间马尔可夫框架中时,所产生的跟踪系统产生了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Head pose estimation of partially occluded faces Minimum Bayes error features for visual recognition by sequential feature selection and extraction Using vanishing points to correct camera rotation in images Dry granular flows need special tools Body tracking in human walk from monocular video sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1