Distributed cooperative learning over networks via wavelet approximation

Jin Xie, Weisheng Chen, Hao Dai
{"title":"Distributed cooperative learning over networks via wavelet approximation","authors":"Jin Xie, Weisheng Chen, Hao Dai","doi":"10.1109/DDCLS.2017.8068060","DOIUrl":null,"url":null,"abstract":"This paper investigates the problem of the distributed cooperative learning over networks via the wavelet approximation. On the basis of the wavelet approximation (WA) theory, the novel distributed cooperative learning (DCL) method, called DCL-WA, is proposed in this paper. The wavelet series is used to approximate the function of network nodes. For the networked systems, DCL method is used to train the optimal weight coefficient matrices of wavelet series, so as to get the best approximation function of network nodes. An illustrative example is presented to show the efficiency of the proposed strategy.","PeriodicalId":419114,"journal":{"name":"2017 6th Data Driven Control and Learning Systems (DDCLS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th Data Driven Control and Learning Systems (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2017.8068060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the problem of the distributed cooperative learning over networks via the wavelet approximation. On the basis of the wavelet approximation (WA) theory, the novel distributed cooperative learning (DCL) method, called DCL-WA, is proposed in this paper. The wavelet series is used to approximate the function of network nodes. For the networked systems, DCL method is used to train the optimal weight coefficient matrices of wavelet series, so as to get the best approximation function of network nodes. An illustrative example is presented to show the efficiency of the proposed strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波近似的网络分布式合作学习
研究了基于小波逼近的网络分布式协同学习问题。本文在小波近似理论的基础上,提出了一种新的分布式合作学习方法(DCL -WA)。用小波级数逼近网络节点的函数。对于网络系统,采用DCL方法训练小波级数的最优权系数矩阵,从而得到网络节点的最佳逼近函数。通过一个实例说明了所提策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-free adaptive MIMO control algorithm application in polishing robot Multiple-fault diagnosis of analog circuit with fault tolerance Iterative learning control for switched singular systems Active disturbance rejection generalized predictive control and its application on large time-delay systems Robust ADRC for nonlinear time-varying system with uncertainties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1