A novel neuro-fuzzy model-based run-to-run control for batch processes with uncertainties

L. Jia, Jiping Shi, Yang Song, M. Chiu
{"title":"A novel neuro-fuzzy model-based run-to-run control for batch processes with uncertainties","authors":"L. Jia, Jiping Shi, Yang Song, M. Chiu","doi":"10.1109/CCDC.2009.5195238","DOIUrl":null,"url":null,"abstract":"In this paper, a run-to-run control with neuro-fuzzy model updating mechanism is developed. This strategy features the ability to learn from previous batches to obtain iteratively the optimal control profile and adjust the neuro-fuzzy model parameters. In addition, an updating algorithm guaranteeing the global convergence of the weights of the model is developed based on the Lyapunov approach. As a result, model uncertainties can be handled. Simulation results show that by updating the model from batch to batch, the control profile converges to the corresponding suboptimal one in the subsequent batches.","PeriodicalId":127110,"journal":{"name":"2009 Chinese Control and Decision Conference","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Control and Decision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2009.5195238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, a run-to-run control with neuro-fuzzy model updating mechanism is developed. This strategy features the ability to learn from previous batches to obtain iteratively the optimal control profile and adjust the neuro-fuzzy model parameters. In addition, an updating algorithm guaranteeing the global convergence of the weights of the model is developed based on the Lyapunov approach. As a result, model uncertainties can be handled. Simulation results show that by updating the model from batch to batch, the control profile converges to the corresponding suboptimal one in the subsequent batches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于神经模糊模型的不确定批处理运行控制方法
本文提出了一种具有神经模糊模型更新机制的跑对跑控制方法。该策略的特点是能够从以前的批次中学习,迭代地获得最优控制轮廓并调整神经模糊模型参数。此外,基于Lyapunov方法,提出了一种保证模型权值全局收敛的更新算法。因此,可以处理模型的不确定性。仿真结果表明,通过逐个更新模型,控制轮廓收敛到后续批次对应的次优轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Observer-based H∞ control for discrete-time T-S fuzzy systems Soft sensor for distillation column feeds Design of temperature measure system for variable sensitive temperature range Wavelet neural network based fault diagnosis of asynchronous motor Analysis of the divert ability of atmospheric interceptors controlled by lateral jet thrusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1