Design considerations for massively parallel channel estimation algorithms

Da Lio, F. Rossetto, L. Vangelista
{"title":"Design considerations for massively parallel channel estimation algorithms","authors":"Da Lio, F. Rossetto, L. Vangelista","doi":"10.1109/ISWCS.2011.6125308","DOIUrl":null,"url":null,"abstract":"Accurate channel estimation may require complex algorithms for effective results, especially in the case of a multiuser detector. The introduction of Graphic Processing Units (GPUs) has opened up new possibilities for the implementation of numerically intensive channel estimation algorithms. This paper studies the implementation on GPUs of channel estimation algorithms for channels affected by strong phase noise. While classic Maximum Likelihood estimation is still the most competitive in terms of throughput and memory bandwidth, Steepest Ascent algorithms show the largest speed improvement due to their structure, which is the most suitable for implementation on a parallel processor like the GPU.","PeriodicalId":414065,"journal":{"name":"2011 8th International Symposium on Wireless Communication Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 8th International Symposium on Wireless Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2011.6125308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate channel estimation may require complex algorithms for effective results, especially in the case of a multiuser detector. The introduction of Graphic Processing Units (GPUs) has opened up new possibilities for the implementation of numerically intensive channel estimation algorithms. This paper studies the implementation on GPUs of channel estimation algorithms for channels affected by strong phase noise. While classic Maximum Likelihood estimation is still the most competitive in terms of throughput and memory bandwidth, Steepest Ascent algorithms show the largest speed improvement due to their structure, which is the most suitable for implementation on a parallel processor like the GPU.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模并行信道估计算法的设计考虑
准确的信道估计可能需要复杂的算法才能得到有效的结果,特别是在多用户检测器的情况下。图形处理单元(gpu)的引入为数字密集型信道估计算法的实现开辟了新的可能性。本文研究了受强相位噪声影响的信道估计算法在gpu上的实现。虽然经典的最大似然估计在吞吐量和内存带宽方面仍然是最具竞争力的,但由于其结构,最陡上升算法显示出最大的速度改进,这最适合在GPU等并行处理器上实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transmit precoding scheme for ICI suppression and path diversity in FS-OFDM A simple analytical model for Robust Header Compression in correlated wireless links CORELA: A cooperative relaying enhanced link adaptation algorithm for IEEE 802.11 WLANs Interference alignment, carrier pairing, and lattice decoding Asymptotic performance of dual-hop non-regenerative cooperative systems with or without direct path
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1