The optimal model reduction method for spatially distributed system based on simulated annealing algorithm

Mengling Wang, H. Shi
{"title":"The optimal model reduction method for spatially distributed system based on simulated annealing algorithm","authors":"Mengling Wang, H. Shi","doi":"10.1109/CSIP.2012.6308794","DOIUrl":null,"url":null,"abstract":"For partial differential equation description unknown spatially distributed systems, the number of local models determines the dimension of the model. So far, there is no mature method about how to obtain the optimal region division. Usually, the local region division is related with the location of sensors. It may affect the accuracy and computational complexityH of the modeling directly. This paper presents an optimal model reduction approach for spatially distributed systems based on simulated annealing algorithm. At first, the optimality criterion is presented. And then, the simulated annealing based iterative optimizing method is proposed to solve the optimal model reduction. The simulations demonstrated show the accuracy and efficiency of the proposed methodologies.","PeriodicalId":193335,"journal":{"name":"2012 International Conference on Computer Science and Information Processing (CSIP)","volume":"504 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Computer Science and Information Processing (CSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSIP.2012.6308794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For partial differential equation description unknown spatially distributed systems, the number of local models determines the dimension of the model. So far, there is no mature method about how to obtain the optimal region division. Usually, the local region division is related with the location of sensors. It may affect the accuracy and computational complexityH of the modeling directly. This paper presents an optimal model reduction approach for spatially distributed systems based on simulated annealing algorithm. At first, the optimality criterion is presented. And then, the simulated annealing based iterative optimizing method is proposed to solve the optimal model reduction. The simulations demonstrated show the accuracy and efficiency of the proposed methodologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模拟退火算法的空间分布式系统最优模型约简方法
对于用偏微分方程描述未知的空间分布系统,局部模型的个数决定了模型的维数。到目前为止,关于如何获得最优的区域划分还没有成熟的方法。通常,局部区域的划分与传感器的位置有关。这将直接影响建模的精度和计算复杂度。本文提出了一种基于模拟退火算法的空间分布式系统最优模型约简方法。首先,给出了最优准则。然后,提出了基于模拟退火的迭代优化方法来解决最优模型约简问题。仿真结果表明了所提方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network information impacting on rural education Scene detection in interference rejection combining algorithm Effects of oversample in tone reservation scheme for PAPR reduction in OFDM systems Efficient clustering index for semantic Web service based on user preference Research on fusion control of cement rotary kiln based on rough set
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1