{"title":"A stochastic hyper-heuristic for optimising through comparisons","authors":"Kieran R. C. Greer","doi":"10.1109/KAM.2010.5646166","DOIUrl":null,"url":null,"abstract":"This paper introduces a new hyper-heuristic framework for automatically searching and changing potential solutions to a particular problem. The solutions and the problem datasets are placed into a grid and then a game is played to try and optimise the total cost over the whole grid, using a randomising process. The randomisation could be compared to a simulated annealing approach, where the aim is to improve the solution space as a whole, possibly at the expense of certain better solutions. It is hoped that this will give the solution search an appropriate level of robustness to allow it to avoid local optima.","PeriodicalId":160788,"journal":{"name":"2010 Third International Symposium on Knowledge Acquisition and Modeling","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Symposium on Knowledge Acquisition and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KAM.2010.5646166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper introduces a new hyper-heuristic framework for automatically searching and changing potential solutions to a particular problem. The solutions and the problem datasets are placed into a grid and then a game is played to try and optimise the total cost over the whole grid, using a randomising process. The randomisation could be compared to a simulated annealing approach, where the aim is to improve the solution space as a whole, possibly at the expense of certain better solutions. It is hoped that this will give the solution search an appropriate level of robustness to allow it to avoid local optima.