A stochastic hyper-heuristic for optimising through comparisons

Kieran R. C. Greer
{"title":"A stochastic hyper-heuristic for optimising through comparisons","authors":"Kieran R. C. Greer","doi":"10.1109/KAM.2010.5646166","DOIUrl":null,"url":null,"abstract":"This paper introduces a new hyper-heuristic framework for automatically searching and changing potential solutions to a particular problem. The solutions and the problem datasets are placed into a grid and then a game is played to try and optimise the total cost over the whole grid, using a randomising process. The randomisation could be compared to a simulated annealing approach, where the aim is to improve the solution space as a whole, possibly at the expense of certain better solutions. It is hoped that this will give the solution search an appropriate level of robustness to allow it to avoid local optima.","PeriodicalId":160788,"journal":{"name":"2010 Third International Symposium on Knowledge Acquisition and Modeling","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Symposium on Knowledge Acquisition and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KAM.2010.5646166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper introduces a new hyper-heuristic framework for automatically searching and changing potential solutions to a particular problem. The solutions and the problem datasets are placed into a grid and then a game is played to try and optimise the total cost over the whole grid, using a randomising process. The randomisation could be compared to a simulated annealing approach, where the aim is to improve the solution space as a whole, possibly at the expense of certain better solutions. It is hoped that this will give the solution search an appropriate level of robustness to allow it to avoid local optima.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过比较进行优化的随机超启发式算法
本文介绍了一种新的超启发式框架,用于自动搜索和更改特定问题的潜在解决方案。解决方案和问题数据集被放置到一个网格中,然后玩一个游戏来尝试优化整个网格的总成本,使用随机化过程。随机化可以与模拟退火方法进行比较,其目的是改善整个解决方案空间,可能以牺牲某些更好的解决方案为代价。希望这将使解搜索具有适当的鲁棒性,以使其避免局部最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network resources construction based on virtualization Fuzzy variable time series based on fuzzy membership function and econometrics A novel VLSI architecture of 8×8 integer DCT based on H.264/AVC FRext The new way of configuration management of network devices under mutable environment Staff assessment and promotion models based on social assessment matrix inspired by social network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1