Interest of the combination of classifiers for volumetric textures classification

E. Ben Othmen, M. A. Cherni, M. Sayadi
{"title":"Interest of the combination of classifiers for volumetric textures classification","authors":"E. Ben Othmen, M. A. Cherni, M. Sayadi","doi":"10.1109/ICEESA.2013.6578378","DOIUrl":null,"url":null,"abstract":"Nowadays, classification is applied in various fields such as pattern and writing recognition, prints checking, faces identification, medical images analysis, 2D textures characterization and volumetric textures characterization. Indeed, the three-dimensional field is considered among one of the most important fields in image processing because of the great quantity of information that can be extracted. In this work, we try to improve the performances of classification for volumetric textures images by proposing a multiple classifier systems (MCS) based method combining three Euclidean classifiers: simple Euclidean classifier (ES), normal Euclidean classifier (EN) and balanced Euclidean classifier (EB). Thereafter, we compared the performance of the proposed method to the Euclidean methods (ES, EN and EB). The hybrid presented approach has proven to be more efficient in classification and mostly robust against Gaussian noise.","PeriodicalId":212631,"journal":{"name":"2013 International Conference on Electrical Engineering and Software Applications","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Electrical Engineering and Software Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEESA.2013.6578378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, classification is applied in various fields such as pattern and writing recognition, prints checking, faces identification, medical images analysis, 2D textures characterization and volumetric textures characterization. Indeed, the three-dimensional field is considered among one of the most important fields in image processing because of the great quantity of information that can be extracted. In this work, we try to improve the performances of classification for volumetric textures images by proposing a multiple classifier systems (MCS) based method combining three Euclidean classifiers: simple Euclidean classifier (ES), normal Euclidean classifier (EN) and balanced Euclidean classifier (EB). Thereafter, we compared the performance of the proposed method to the Euclidean methods (ES, EN and EB). The hybrid presented approach has proven to be more efficient in classification and mostly robust against Gaussian noise.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分类器组合对体积纹理分类的兴趣
目前,分类技术已应用于图案和文字识别、指纹检测、人脸识别、医学图像分析、二维纹理表征和体积纹理表征等领域。的确,三维领域被认为是图像处理中最重要的领域之一,因为它可以提取大量的信息。在这项工作中,我们试图通过提出一种基于多分类器系统(MCS)的方法,结合三种欧几里得分类器:简单欧几里得分类器(ES),正常欧几里得分类器(EN)和平衡欧几里得分类器(EB)来提高体积纹理图像的分类性能。之后,我们将所提出的方法与欧几里得方法(ES, EN和EB)的性能进行了比较。该方法具有较好的分类效率和较强的抗高斯噪声鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal expansion of linear system using generalized orthogonal basis Photovoltaic properties of devices using fullerene and copper-phthalocyanine doped with poly(3-hexylthiophène) Simulation of a Tunisian wind farm of Sidi-Daoud using PSAT Adaptive observer approach for actuators multiplicative faults detection and isolation Discrete time sliding mode control of PMSM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1