Scaling VR Video Conferencing

Mallesham Dasari, E. Lu, Michael W. Farb, Nuno Pereira, Ivan Liang, Anthony G. Rowe
{"title":"Scaling VR Video Conferencing","authors":"Mallesham Dasari, E. Lu, Michael W. Farb, Nuno Pereira, Ivan Liang, Anthony G. Rowe","doi":"10.1109/VR55154.2023.00080","DOIUrl":null,"url":null,"abstract":"Virtual Reality (VR) telepresence platforms are being challenged to support live performances, sporting events, and conferences with thousands of users across seamless virtual worlds. Current systems have struggled to meet these demands which has led to high-profile performance events with groups of users isolated in parallel sessions. The core difference in scaling VR environments compared to classic 2D video content delivery comes from the dynamic peer-to-peer spatial dependence on communication. Users have many pair-wise interactions that grow and shrink as they explore spaces. In this paper, we discuss the challenges of VR scaling and present an architecture that supports hundreds of users with spatial audio and video in a single virtual environment. We leverage the property of spatial locality with two key optimizations: (1) a Quality of Service (QoS) scheme to prioritize audio and video traffic based on users' locality, and (2) a resource manager that allocates client connections across multiple servers based on user proximity within the virtual world. Through real-world deployments and extensive evaluations under real and simulated environments, we demonstrate the scalability of our platform while showing improved QoS compared with existing approaches.","PeriodicalId":346767,"journal":{"name":"2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR55154.2023.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Virtual Reality (VR) telepresence platforms are being challenged to support live performances, sporting events, and conferences with thousands of users across seamless virtual worlds. Current systems have struggled to meet these demands which has led to high-profile performance events with groups of users isolated in parallel sessions. The core difference in scaling VR environments compared to classic 2D video content delivery comes from the dynamic peer-to-peer spatial dependence on communication. Users have many pair-wise interactions that grow and shrink as they explore spaces. In this paper, we discuss the challenges of VR scaling and present an architecture that supports hundreds of users with spatial audio and video in a single virtual environment. We leverage the property of spatial locality with two key optimizations: (1) a Quality of Service (QoS) scheme to prioritize audio and video traffic based on users' locality, and (2) a resource manager that allocates client connections across multiple servers based on user proximity within the virtual world. Through real-world deployments and extensive evaluations under real and simulated environments, we demonstrate the scalability of our platform while showing improved QoS compared with existing approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缩放VR视频会议
虚拟现实(VR)远程呈现平台正面临着支持现场表演、体育赛事和跨越无缝虚拟世界的数千用户会议的挑战。当前的系统一直在努力满足这些需求,这导致在并行会话中隔离的用户组出现了引人注目的性能事件。与经典2D视频内容传输相比,缩放VR环境的核心差异来自于对通信的动态点对点空间依赖。用户有许多成对的交互,随着他们探索空间而增加和减少。在本文中,我们讨论了VR扩展的挑战,并提出了一种架构,该架构支持数百个用户在单个虚拟环境中使用空间音频和视频。我们利用空间局部性进行了两个关键优化:(1)服务质量(QoS)方案,根据用户的局部性对音频和视频流量进行优先级排序,以及(2)资源管理器,根据虚拟世界中的用户接近度在多个服务器上分配客户端连接。通过在真实和模拟环境下的实际部署和广泛评估,我们展示了我们平台的可扩展性,同时与现有方法相比显示了改进的QoS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simultaneous Scene-independent Camera Localization and Category-level Object Pose Estimation via Multi-level Feature Fusion A study of the influence of AR on the perception, comprehension and projection levels of situation awareness A Large-Scale Study of Proxemics and Gaze in Groups Investigating Guardian Awareness Techniques to Promote Safety in Virtual Reality Locomotion-aware Foveated Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1