Multiscale Geometric Data Analysis via Laplacian Eigenvector Cascading

Joshua L. Mike, Jose A. Perea
{"title":"Multiscale Geometric Data Analysis via Laplacian Eigenvector Cascading","authors":"Joshua L. Mike, Jose A. Perea","doi":"10.1109/ICMLA.2019.00183","DOIUrl":null,"url":null,"abstract":"We develop here an algorithmic framework for constructing consistent multiscale Laplacian eigenfunctions (vectors) on data. Consequently, we address the unsupervised machine learning task of finding scalar functions capturing consistent structure across scales in data, in a way that encodes intrinsic geometric and topological features. This is accomplished by two algorithms for eigenvector cascading. We show via examples that cascading accelerates the computation of graph Laplacian eigenvectors, and more importantly, that one obtains consistent bases of the associated eigenspaces across scales. Finally, we present an application to TDA mapper, showing that our multiscale Laplacian eigenvectors identify stable flair-like structures in mapper graphs of varying granularity.","PeriodicalId":436714,"journal":{"name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2019.00183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We develop here an algorithmic framework for constructing consistent multiscale Laplacian eigenfunctions (vectors) on data. Consequently, we address the unsupervised machine learning task of finding scalar functions capturing consistent structure across scales in data, in a way that encodes intrinsic geometric and topological features. This is accomplished by two algorithms for eigenvector cascading. We show via examples that cascading accelerates the computation of graph Laplacian eigenvectors, and more importantly, that one obtains consistent bases of the associated eigenspaces across scales. Finally, we present an application to TDA mapper, showing that our multiscale Laplacian eigenvectors identify stable flair-like structures in mapper graphs of varying granularity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于拉普拉斯特征向量级联的多尺度几何数据分析
我们开发了一个算法框架,用于在数据上构造一致的多尺度拉普拉斯特征函数(向量)。因此,我们解决了无监督机器学习任务,即以编码内在几何和拓扑特征的方式,在数据中寻找捕获跨尺度一致结构的标量函数。这是通过两种特征向量级联算法来实现的。我们通过实例表明,级联加速了图拉普拉斯特征向量的计算,更重要的是,人们获得了跨尺度的相关特征空间的一致基。最后,我们给出了一个在TDA映射器上的应用,证明了我们的多尺度拉普拉斯特征向量在不同粒度的映射图中识别出稳定的类形结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Stenosis Classification of Carotid Artery Sonography using Deep Neural Networks Hybrid Condition Monitoring for Power Electronic Systems Time Series Anomaly Detection from a Markov Chain Perspective Anyone here? Smart Embedded Low-Resolution Omnidirectional Video Sensor to Measure Room Occupancy Deep Learning with Domain Randomization for Optimal Filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1