Embedded high performance computing for on-board hyperspectral image classification

Pankaj H. Randhe, S. Durbha, N. Younan
{"title":"Embedded high performance computing for on-board hyperspectral image classification","authors":"Pankaj H. Randhe, S. Durbha, N. Younan","doi":"10.1109/WHISPERS.2016.8071710","DOIUrl":null,"url":null,"abstract":"Jetson TK1 is a recently launched embedded application development platform from NVIDIA, which features the Tegra K1 processor and Kepler Graphics Processing Unit (GPU). We envisage that such a system has huge potential for deploying an embedded system for on-board classification of hyperspectral images. We used a convolutional deep neural network for designing a unified model for hyperspectral image classification. Deep convolutional model hierarchically extracts spectral-spatial features from hyperspectral imagery and these features are used by the fully connected layer of neural network to perform pixel level classification of hyperspectral imagery. Our experimental results show that Jetson TK1 based hyperspectral image classification gives promising results and the possibility of having Jetson based embedded platform for on-board classification of hyperspectral images.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Jetson TK1 is a recently launched embedded application development platform from NVIDIA, which features the Tegra K1 processor and Kepler Graphics Processing Unit (GPU). We envisage that such a system has huge potential for deploying an embedded system for on-board classification of hyperspectral images. We used a convolutional deep neural network for designing a unified model for hyperspectral image classification. Deep convolutional model hierarchically extracts spectral-spatial features from hyperspectral imagery and these features are used by the fully connected layer of neural network to perform pixel level classification of hyperspectral imagery. Our experimental results show that Jetson TK1 based hyperspectral image classification gives promising results and the possibility of having Jetson based embedded platform for on-board classification of hyperspectral images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
车载高光谱图像分类的嵌入式高性能计算
Jetson TK1是NVIDIA最近推出的嵌入式应用开发平台,其特色是Tegra K1处理器和Kepler图形处理单元(GPU)。我们设想这样的系统具有巨大的潜力,可以部署嵌入式系统,用于机载高光谱图像的分类。我们使用卷积深度神经网络设计了一个统一的高光谱图像分类模型。深度卷积模型从高光谱图像中分层提取光谱空间特征,这些特征被神经网络的全连接层用来对高光谱图像进行像素级分类。我们的实验结果表明,基于Jetson TK1的高光谱图像分类取得了良好的效果,并且具有基于Jetson的机载高光谱图像分类嵌入式平台的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyperspectral and color-infrared imaging from ultralight aircraft: Potential to recognize tree species in urban environments Mapping land covers of brussels capital region using spatially enhanced hyperspectral images Morpho-spectral objects classification by hyperspectral airborne imagery Land-cover monitoring using time-series hyperspectral data via fractional-order darwinian particle swarm optimization segmentation Nonnegative CP decomposition of multiangle hyperspectral data: A case study on CRISM observations of Martian ICY surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1