Anders Drachen, Alessandro Canossa, Georgios N. Yannakakis
{"title":"Player modeling using self-organization in Tomb Raider: Underworld","authors":"Anders Drachen, Alessandro Canossa, Georgios N. Yannakakis","doi":"10.1109/CIG.2009.5286500","DOIUrl":null,"url":null,"abstract":"We present a study focused on constructing models of players for the major commercial title Tomb Raider: Underworld (TRU). Emergent self-organizing maps are trained on high-level playing behavior data obtained from 1365 players that completed the TRU game. The unsupervised learning approach utilized reveals four types of players which are analyzed within the context of the game. The proposed approach automates, in part, the traditional user and play testing procedures followed in the game industry since it can inform game developers, in detail, if the players play the game as intended by the game design. Subsequently, player models can assist the tailoring of game mechanics in real-time for the needs of the player type identified.","PeriodicalId":358795,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence and Games","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"297","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2009.5286500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 297
Abstract
We present a study focused on constructing models of players for the major commercial title Tomb Raider: Underworld (TRU). Emergent self-organizing maps are trained on high-level playing behavior data obtained from 1365 players that completed the TRU game. The unsupervised learning approach utilized reveals four types of players which are analyzed within the context of the game. The proposed approach automates, in part, the traditional user and play testing procedures followed in the game industry since it can inform game developers, in detail, if the players play the game as intended by the game design. Subsequently, player models can assist the tailoring of game mechanics in real-time for the needs of the player type identified.