Learning graph fusion for query and database specific image retrieval

Chih-Kuan Yeh, Wei-Chieh Wu, Y. Wang
{"title":"Learning graph fusion for query and database specific image retrieval","authors":"Chih-Kuan Yeh, Wei-Chieh Wu, Y. Wang","doi":"10.1109/MMSP.2016.7813337","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a graph-based image retrieval algorithm via query and database specific feature fusion. While existing feature fusion approaches exist for image retrieval, they typically do not consider the image database of interest (i.e., to be retrieved) for observing the associated feature contributions. In the offline learning stage, our proposed method first identifies representative features for describing images to be retrieved. Given a query input, we further exploit and integrate its visual information and utilize graph-based fusion for performing query-database specific retrieval. In our experiments, we show that our proposed method achieves promising performance on the benchmark database of UKbench, and performs favorably against recent fusion-based image retrieval approaches.","PeriodicalId":113192,"journal":{"name":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2016.7813337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a graph-based image retrieval algorithm via query and database specific feature fusion. While existing feature fusion approaches exist for image retrieval, they typically do not consider the image database of interest (i.e., to be retrieved) for observing the associated feature contributions. In the offline learning stage, our proposed method first identifies representative features for describing images to be retrieved. Given a query input, we further exploit and integrate its visual information and utilize graph-based fusion for performing query-database specific retrieval. In our experiments, we show that our proposed method achieves promising performance on the benchmark database of UKbench, and performs favorably against recent fusion-based image retrieval approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习图融合查询和数据库特定的图像检索
本文提出了一种基于查询和数据库特征融合的基于图的图像检索算法。虽然现有的图像检索特征融合方法存在,但它们通常不考虑感兴趣的图像数据库(即待检索的图像数据库)来观察相关的特征贡献。在离线学习阶段,我们提出的方法首先识别用于描述要检索的图像的代表性特征。给定查询输入,我们进一步开发和集成其视觉信息,并利用基于图的融合来执行查询数据库特定的检索。在我们的实验中,我们表明我们提出的方法在UKbench基准数据库上取得了令人满意的性能,并且与最近基于融合的图像检索方法相比表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized dirichlet mixture matching projection for supervised linear dimensionality reduction of proportional data Mobile live streaming: Insights from the periscope service Low-power distributed sparse recovery testbed on wireless sensor networks Laughter detection based on the fusion of local binary patterns, spectral and prosodic features An embedded 3D geometry score for mobile 3D visual search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1