Regression models for covariance structures in longitudinal studies

Jianxin Pan, G. MacKenzie
{"title":"Regression models for covariance structures in longitudinal studies","authors":"Jianxin Pan, G. MacKenzie","doi":"10.1191/1471082X06st105oa","DOIUrl":null,"url":null,"abstract":"A convenient reparametrization of the marginal covariance matrix arising in longitudinal studies is discussed. The new parameters have transparent statistical interpretations, are unconstrained and may be modelled parsimoniously in terms of polynomials of time. We exploit this framework to model the dependence of the covariance structure on baseline covariates, time and their interaction. The rationale is based on the assumption that a homogeneous covariance structure with respect to the covariate space is a testable model choice. Accordingly, we provide methods for testing this assumption by incorporating covariates along with time into the model for the covariance structure. We also present new computational algorithms which can handle unbalanced longitudinal data, thereby extending existing methods. The new model is used to analyse Kenward’s (1987) cattle data, and the findings are compared with published analyses of the same data set.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X06st105oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

A convenient reparametrization of the marginal covariance matrix arising in longitudinal studies is discussed. The new parameters have transparent statistical interpretations, are unconstrained and may be modelled parsimoniously in terms of polynomials of time. We exploit this framework to model the dependence of the covariance structure on baseline covariates, time and their interaction. The rationale is based on the assumption that a homogeneous covariance structure with respect to the covariate space is a testable model choice. Accordingly, we provide methods for testing this assumption by incorporating covariates along with time into the model for the covariance structure. We also present new computational algorithms which can handle unbalanced longitudinal data, thereby extending existing methods. The new model is used to analyse Kenward’s (1987) cattle data, and the findings are compared with published analyses of the same data set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纵向研究中协方差结构的回归模型
讨论了纵向研究中边际协方差矩阵的一种方便的再参数化方法。新参数具有透明的统计解释,不受约束,并且可以根据时间多项式简洁地建模。我们利用这个框架来模拟协方差结构对基线协变量、时间及其相互作用的依赖性。其基本原理是基于这样的假设:相对于协变量空间的齐次协方差结构是一个可测试的模型选择。因此,我们提供了通过将协方差随时间纳入协方差结构模型来检验这一假设的方法。我们还提出了新的计算算法,可以处理不平衡的纵向数据,从而扩展了现有的方法。新模型用于分析Kenward(1987)的牛数据,并将研究结果与已发表的相同数据集的分析结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1