{"title":"Dynamic optimal schedule management method for microgrid system considering forecast errors of renewable power generations","authors":"Ango Sobu, Guohong Wu","doi":"10.1109/POWERCON.2012.6401287","DOIUrl":null,"url":null,"abstract":"This paper proposes the dynamic optimal schedule management method for an isolated or grid-connected microgrid system with renewable power generations such as PV systems and wind power systems, and with back-up and storage sources such as micro-turbine generators and electricity storage, which is able to consider forecast errors with uncertainties of solar radiation, wind speed and local user demands. The energy management system (EMS) structure for optimization in terms of the economic and stable operation in the microgrid is proposed. Optimization problem for the power from micro-turbine generators or the grid and electricity storage in EMS is resolved by dynamic programming (DP) and equal incremental fuel cost method. The proposed method is confirmed by case study that used forecast data and realization data of renewable power generations and local user demands. In conclusion, this paper presented a practicable method for the operation of a microgrid.","PeriodicalId":176214,"journal":{"name":"2012 IEEE International Conference on Power System Technology (POWERCON)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Power System Technology (POWERCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERCON.2012.6401287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57
Abstract
This paper proposes the dynamic optimal schedule management method for an isolated or grid-connected microgrid system with renewable power generations such as PV systems and wind power systems, and with back-up and storage sources such as micro-turbine generators and electricity storage, which is able to consider forecast errors with uncertainties of solar radiation, wind speed and local user demands. The energy management system (EMS) structure for optimization in terms of the economic and stable operation in the microgrid is proposed. Optimization problem for the power from micro-turbine generators or the grid and electricity storage in EMS is resolved by dynamic programming (DP) and equal incremental fuel cost method. The proposed method is confirmed by case study that used forecast data and realization data of renewable power generations and local user demands. In conclusion, this paper presented a practicable method for the operation of a microgrid.